RS

P

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
. International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :

GOGF 15/62 Al

(11) International Publication Number:

(43) International Publication Date:

WO 94/10642

11 May 1994 (11.05.94)

(21) International Application Number: PCT/US92/09350

(22) International Filing Date: 2 November 1992 (02.11.92)

(71) Applicant: THE 3DO COMPANY [US/US]; 1820 Gate-
way Drive, San Mateo, CA 94404 (US).

(72) Inventors: MICAL, Robert, Joseph ; 25 Geri Place, Red-
wood City, CA 94303 (US). NEEDLE, David, Lewis ;
2981 Northwood Drive, Alameda, CA 94501 (US).

(74) Agents: WOLFELD, Warren, S., et al.; Fliesler, Dubb,
Meyer and Lovejoy, Four Embarcadero Center - Suite
400, San Francisco, CA 94111-4156 (US).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CS,
DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG,
MN, MW, NL, NO, PL, RO, RU, SD, SE, European pa-
tent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,
LU, MC, NL, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD FOR CONTROLLING A SPRYTE RENDERING PROCESSOR

(57) Abstract

Linked lists of spryte control blocks are prepared in
memory (108) and transversed by a spryte rendering engine.
Each spryte control block (106) controls the rendering of a re-
spective spryte into the display buffer, and contains such infor-
mation as a pointer to source data for the corresponding spryte,
positional an incrementing specifications for a destination qua-
drilateral, a control word for manipulations to be performed on
the spryte image source data, and an indication of which of
several available formats the spryte image source data is packed
in. Once the linked list is prepared, the spryte rendering engine
(106) can be called by writing certain values into specific memo-
ry-mapped hardware registers, and then writing dummy data to
an address recognized by the hardware as a command to in-
itiate the spryte rendering operation (106).

] 133
=« 130
T4 / sLow
104~ A(31:0) 1 A(16:2) BUS '\
FORD)
Ppma)
L 0(9:0 2
AB10 A(31:0)| cONTROL T
102 105-\ ,r* @:Z){“ 4’ B/’*
oot sores] |0 || o
cPy ADDRESS MANIPULATOR CThi= e
_/ =10(31:16) PLAYER BUS | A 122” D;;}CE
129 D(15:0) BT DO TR ==
ol o [T 1% [(1387436 oy
2441 Luaddel] R PEDO L IPLAYER
Leng {4 rend |4 PROT . [BUS
@31:16) J(15:0)) {1084 110 114 PELAFBRA Lo
4 CospA HO8[C oo A 1—1088
DECOMPRESSION
RMEM
W COPROCESSOR
D D
118 oy, f16 Ry, Ji6 vk pren
D{31:16) -\ 15:00f 4 (15:001] 1 ry
D(15:0] {720 1 D361
S{31:0] 122)3 1 D{15:0)
CONTROL'Y | 436~
L rany, CO/CDROM { [exPaNsTON
32 'i, 140 e /}' PLAYER || BUS
W CIL DLOR S CiL A(15~'2) 148 i -
. : ¥
VIDEO AUDIONIDEO ATy | Py ’rﬁr "f_ﬂ)
INPUT PROCESSOR £xp. [TONTROL
DEVICE oS T
AUDIO CTL ASION
7] 7 ¢ Ltat Lysy 'meus
160 157—1, 155—], ,55_//
EXT VID IN 1 57 AD(24:0) / ouT
AUDIO
ADIO CTL RGBIN | gg» 1687 DIE%%TE
o AUDIO/VIDEO
OUTPUT CIRCUITRY
i < EXT AUD IN
COMPOSITE RF SVHS AUDIO

VIDEC OUT QUT L&R OUT

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
cs
Ccz
DE
DK
ES
Fl
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Céte d'lvoire
Camcroon
China
Czechoslovakia
Czech Republic
Germany
Dcenmark
Spain

Fintand
France

Gabon

GB
GE
GN
GR
HU
1IE

T

JP

KE
KG
KP

KR
KZ
LI
LK
LU
LY
MC
MD
MG
ML
MN

United Kingdom
Georgia

Guineca

Greceee

Hungary

Iretand

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL
PT
RO
RU
sD
SE
Sl
SK
SN
D
TG
TJ

UA
us
uz
VN

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Urbekistan

Viet Nam

WO 94/10642 PCT/US92/09350

-1-

METHOD FOR NTROLLING A SPRYTE RENDERING PROCE R

10 A portion of the disclosure of this patent document
contains material which is subject to copyright
protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document
or the patent disclosure as it appears in the U.S.

15 Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

CROSS-REFERENCE TQO RELATED APPLICATIONS

This application is related to:

20 PCT Patent Application Serial No. PCT/US92/09349,
entitled AUDIO/VIDEO COMPUTER ARCHITECTURE, by inventors
Mical et al., filed concurrently herewith, . Attorney
Docket No. MDIO4222, and also to U.S. Patent Application
Serial No. 07/970,308, bearing the same title, same

25 inventors and also filed concurrently herewith;

PCT Patent Application Serial No. PCT/US92/09342,
entitled RESOLUTION ENHANCEMENT FOR VIDEO DISPLAY USING
MULTI-LINE INTERPOLATION, by inventors Mical et al.,
filed concurrently herewith, Attorney Docket No.

30 MDIO3050, and also to U.S. Patent Application Serial No.
07/970,287, bearing the same title, same inventors and
also filed concurrently herewith;

PCT Patent Application Serial No. PCT/US92/09348,
entitled METHOD FOR GENERATING THREE DIMENSIONAL SOUND,

35 by inventor David C. Platt, filed concurrently herewith,
Attorney Docket No. MDIO4220, and also to U.S. Patent
Application Seriai No. 07/970,274, bearing the same

QHRKTITHTFE SHFEET

WO 94/10642 _ PCT/US92/09350

-2~

title, same inventor and also filed concurrently
herewith;

PCT Patent Application Serial No. PCT/US92/09350,

entitled METHOD FOR CONTROLLING A SPRYTE RENDERING

5 PROCESSOR, by inventors Mical et al., filed concurrently

herewith, Attorney Docket No. MDIO3040, and also to U.S.

Patent Application Serial No. 07/970,278, bearing the

same title, same inventors and also filed concurrently
herewith;

10 PCT Patent Application Serial No. PCT/US92/09462,
entitled SPRYTE RENDERING SYSTEM WITH IMPROVED CORNER
CALCULATING ENGINE AND IMPROVED POLYGON-PAINT ENGINE, by
inventors Needle et al., filed concurrently herewith,
Attorney Docket No. MDIO4232, and also to U.S. Patent

15 Application Serial No. 07/970,289, bearing the same
title, same inventors and also filed concurrently
herewith;

PCT Patent Application Serial No. PCT/US92/09460,
entitled METHOD AND APPARATUS FOR UPDATING A CLUT DURING

20 HORIZONTAL BLANKING, by inventors Mical et al., filed
concurrently herewith, Attorney Docket No. MDIO4250, and
also to U.S. Patent Application Serial No. 07/969,994,
bearing the same title, same inventors and also filed
concurrently herewith;

25 PCT Patent Application Serial No. PCT/US92/09461,
entitled IMPROVED METHOD AND APPARATUS FOR PROCESSING
IMAGE DATA, by inventors Mical et al., filed
concurrently herewith, Attorney Docket No. MDIO4230, and
also to U.S. Patent Application Serial No. 07/970,083,

30 bearing the same title, same inventors and also filed
concurrently herewith; and

PCT Patent Application Serial No. PCT/US92/09384,
entitled PLAYER BUS APPARATUS AND METHOD, by inventors
Needle et al., filed concurrently herewith, Attorney

35 Docket No. MDIO4270, and also to U.S. Patent Application

SUBSTITUTE SHEET

WO 94/10642 PCT/US92/09350

-3-

Serial No. 07/970,151, bearing the same title, same
inventors and also filed concurrently herewith.

The related patent applications are all commonly
assigned with the present application and are all

5 incorporated herein by reference in their entirety.

DESCRIPTION OF RELATED ART
1. Eield of the Invention
The invention relates generally to image data
10 processing, and more particularly, to techniques for
controlling a spryte engine to perform functions related
to shadowing, highlighting and other functions, on a
source image which is to be mapped and rendered onto a

destination grid.

15 2. ripti f Rel r

In recent years, the presentation and pre-
presentation processing of visual imagery has shifted
from what was primarily an analog format to an
essentially digital format. Unique problems come to

20 play in the digital processing of image data. The
problems include providing adequate storage capacity for
digital image data and maintaining acceptable data
throughput rates. In addition, there is the problem of
creating a sense of realism in digitally generated

25 imagery, particularly in animated imagery.

The visual realism of imagery generated by digital
video game systems, simulators and the like can be
enhanced by providing special effects such as shadowing,
highlighting and so forth. For example, when the image

30 of an airplane is to be displayed flying over a flat
terrain on a sunny day, the realism of the cverall scene
is enhanced by generating a shadow image of the airplane
within the image of the terrain. The effect appears

more realistic when the terrain region onto which the

SUBSTITUTE SHEET

WO 94/10642 PCT/US92/09350

-4-

shadow is projected becomes dimmed rather than

completely blackened. The observer continues to see

part of the texture of the terrain even though it is

covered by the airplane’s shadow. The effect 1is
5 referred to as "shadowing."

Highlighting is another example of realism-
imparting effects. Suppose an explosive device is
displayed detonating near the airplane. Visual realism
is enhanced by momentarily increasing the brightness

10 (highlighting) of the airplane’s image to create the
impression that light from the explosion is reflecting
off the airplane’s fuselage. The effect appears more
realistic when certain brightness and/or colorization
relationships between different parts of the airplane

15 (e.g., cockpit, fuselage, wings) are maintained.

Home game systems, such as the Sega "Genesis" have
a two-source image merging system for creating shadowing
and highlighting effects on-the-fly (in real time).
When the shadow effect is desired, a first source "tile"

20 or ‘"“sprite" (rectangular block of bit-mapped data
representing the airplane shadow region) is overlaiad
with a second source tile representing the underlying
terrain. For every pixel position where the first
(shadow) sprite intensity is non-zero, a digital signal

25 representing the corresponding terrain intensity in the
second tile is c¢cut in half to thereby produce a
"dimming" effect. The dimmed version of the terrain
tile is then output as part of the video image. {The
dimmed image data is not stored in memory however.)

30 To produce the highlighting effect, the Sega
"Genesis" system divides the shading value of all pixels
within the airplane’s sprite by two and then adds half
the maximum shading value to each such pixel. This
preserves the relative shading relation between parts of

35 the airplane while making each brighter. The augmented

WO 94/10642 PCT/US92/09350

-5~

version of the airplane tile is then output as part of
the video signal, but not saved. It is not possible to
both shade and highlight a tile at the same time in the
Sega "Genesis™" system.

5 The above-described shadowing and highlighting
techniques are of limited |use. Optically-complex
animated scenes require much more. Consider for example
a scene in a Knights of the Realm kind of game. The
hero enters the arch chamber of a church. Stained glass

10 windows of different elevations, colorations,
transparencies, shapes and angles surround the chamber.
A villain is to be seen through the stained glass
windows, approaching from the outside of the chamber at
an angle relative to the stained glass windows. The

15 scene is to be projected through, or displayed on, a
two-dimensional window (hereafter, the observation
plane). For added realism, the position of the
observation plane (the window through which the game
rlayer views the scene) is to rotate slowly about the

20 hero, thus giving a three-dimensional quality to the
displayed two-dimensional scene.

Realistic rendering of such a scene has to take
into consideration the transformation of outside light
as the 1light passes at various angles through the

25 stained glass windows to the observation plane. It also
has to take into account the reflection of internal
lighting off the stained glass windows toward the
observer’s plane. Moreover, if the wvillain throws a
rock through one of the stained glass windows, the

30 visual effects of the hole have to replace those of the
removed window material. If the villain flings mud onto
a window, the transparency and coloration of the
affected window regions have to change accordingly.

Previously available home-game systems (e.g.

35 Nintendo Entertainment System, Sega Genesis) were not

WO 94/10642 PCT/US92/09350

-6~

capable of handling such optically-complex animated
scenes in real time. Some commercial imaging systems

™y

such as the Silicon Graphics "Iris system do provide

mechanisms for handling optical complexities in real

5 time, but this is made possible only through the use of

high speed computers, large memories and special custom

circuitry. These commercial systems are therefore
available only at very high cost.

Heretofore, a 1low cost system for providing

10 realistic renditions of complex animated scenes has not
been available.

Digital graphic processing also relies on the
physical transformation of digital signals representing
image data from one organizational format to another.

15 Part or all of the transformed image data is then
displayed on an appropriate display means (e.g., a
cathode ray tube or a liquid crystal display).

In many instances, it is desirable to transform
digital image data from one format to another at

20 relatively high speed. This is done to create a sense
of animation in displayed images and to create a sense
of real-time responsiveness to user inputs in the case
of interactive systems. Such high-speed transformation
is referred to as real-time digital graphic processing.

25 Real-time digital graphic processing is particularly
useful in flight or other simulation systems,
interactive game systems and the like.

One function that is often called for in real-time
digital graphic processing is the mapping of a source

30 image onto a destination surface. Typically, the source
image comprises one or more pixels each of which is
filled with a particular color or shade. The mapping
function can be a one-to-one copying of pixels from a
source area to a destination area. Or alternatively,

3¢S the mapping function can include a transformation of

WO 94/10642 ‘ PCT/US92/09350

-7-

size, and/or a change of shape (e.g., skew) and/or a
rotation of some angle plus a change of colors or image
brightness.

By way of example, consider a simulated scene in a

5 real-time military game. An airplane is to be pictured
on a display panel such that it appears to be flying
towards or away from a viewer. The viewer controls at
least part of the action on the display by way of real-
time controls (e.g., a joystick). If the airplane is

10 to be seen flying towards the viewer, its image becomes
larger as its apparent distance from the viewer
decreases. Conversely, if the airplane is to be seen
flying away from the viewer, its image becomes smaller
as its distance from the viewer increases. Moreover, if

15 the airplane performs a roll during its flight, its
image has to rotate.

If an explosive device ignites near the airplane as
the airplane flies by, the displayed brightness of the
aircraft body should increase momentarily to simulate

20 reflection of light from the explosion off the fuselage
of the airplane.

The airplane may have transparent components, such
as a large bubble-shaped cockpit window; or a hole on
part of its body, the hole being one that is suddenly

25 created by a striking projectile. In such cases, it is
desirable to show background scenery passing
transparently through the cockpit window and/or body
hole as the airplane flies in front of a background
scene.

30 An animated real-time scene of this type can be
produced on a display means in a number of ways.

A brute force approach would separately generate
each frame of the animated scene data in its entirety,
store the generated frame data in high speed memory

35 (e.g., video RAM) and transfer each complete frame

WO 94/10642 _ PCT/US92/09350

-8-

(background plus airplane) to the display means at an

appropriate frame rate. This brute-force approach

wastes memory space and demands high-speed performance

from the processing circuitry that generates the
5 sequential frames of image data.

A better approach relies on the concept of sprite
painting. One area of memory stores nonchanging,
background image data and a second area of memory stores
the image data of the airplane and other moving bodies.

10 With each displayed frame, the image of the airplane is
mapped from the second memory area onto the background
image of the first memory area. The mapping function
changes with time to provide size enlargement or
reduction and rotation over time. The mapping function

15 also provides changes of color and/or brightness to
simulate various illuminations such as that from a
nearby explosion.

Ideally, it should be possible to take any source
image and produce a mapping of it which includes

20 arbitrary amounts of enlargement or reduction‘in size.
It should be possible to project the mapped copy onto a
destination grid with or without rotation and/or shape
distortion (skew). It should also be possible to
project the mapped copy onto a destination grid with or

25 without changes of color.

High-performance electronic computer systems are
available for transforming image data in such a manner,
such as the Silicon Graphics Iris™ system mentioned
above. Such systems rely on complex software-controlled

30 data transformations and bulk transfers of image data
from one memory region to another. A general purpose
computing unit is burdened with the task of supporting
all calculations. Unfortunately, these computer systems

suffer from drawbacks such as excessive cost, large

WO 94/10642 PCT/US92/09350

-9~

circuit size, complexity and/or slow image rendition
speed.
A need exists within the industry for a compact
image-rendering system that can be implemented at low
5 cost on one or a few integrated circuit (IC) chips and
can nonetheless perform high-speed complex image
transformations.
A need also exists to control such an image-
rendering system with a plurality of software routines
10 or primitives which can be called by higher 1level
routines in a logical, basically self-evident manner, so
that the detailed complexities of the image-rendering
system can be hidden. Such routines should also provide
protection from unintentional misuse of the image-

15 rendering system.

SUMMARY OF THE INVENTION

According to the invention, roughly described,

linked lists of spryte control blocks are prepared in

20 memory and traversed by a spryte rendering engine. Each
spryte control block controls the rendering of a
respective spryte into the display buffer, and contains

such information as a pointer to source data for the
corresponding spryte, positional and perspective

25 specifications for a destination quadrilateral, a
control word for manipulations to be performed on the
spryte image source data, and an indication of which of
several available formats the spryte image source data

is packed in. A spryte control block can also control

30 the spryte rendering engine to modify a portion of
existing display data, using either new spryte image
source data or constant data. Once the linked list is
prepared, the spryte rendering engine can be called by
writing certain wvalues into specific memory-mapped

35 hardware registers, and then writing dummy data to an

WO 94/10642 ' PCT/US92/09350

-10-

address recognized by the hardware as a command to
initiate the spryte rendering operation.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The invention will be described with respect to
particular embodiments thereof, and reference will be
made to the drawings, in which:

Fig. 1 is a block diagram of major components of a
hardware system in which the invention may be used;
10 Fig. 2 is a symbolic block diagram of the address
manipulator of Fig. 1;
Fig. 3 is a block diagram of part of the address
generator of Fig. 2;
Fig. 4 is a block diagram of the stack address
15 logic of Fig. 3; and .
Fig. 5 is a block diagram of left address pad logic

of Fig. 3.
DETATILED DESCRIPTION
20 The embodiments described herein are intended to

operate on hardware systems such as that described in
the related AUDIO/VIDEO COMPUTER ARCHITECTURE
application the related IMPROVED METHOD AND APPARATUS
FOR PROCESSING IMAGE DATA application and the related
25 SPRYTE RENDERING SYSTEM WITH IMPROVED CORNER CALCULATING
ENGINE AND IMPROVED POLYGON-PAINT ENGINE application.
These applications are incorporated herein by reference,
and the description of the hardware described in such
applications need not be repeated here. Certain
30 information set forth below, however, will be useful to

an understanding of the present invention.

I. Overall Hardware Architecture
Fig. 1 is a block diagram showing major components
35 of the hardware system. It comprises a CPU 102, which

WO 94/10642 _ PCT/US92/09350

-11-

may be an ARM 60 RISC processor manufactured by Advanced
RISC Machines, Ltd., Swaffham Bulbeck, Cambridge, U.K.
The ARM 60 is described in Advanced RISC Machines, "ARM
60 Datasheet" (1992), incorporated herein by reference.
5 The address bus 104, which is provided as an input to an
address manipulator chip 106. The address manipulator
chip 106 contains, among other +things, an address
generator for providing DMA-generated addresses to
system memory, as well as addresses from other sources;
10 a D-bus arbiter; two spryte engines; and interfaces to
a player bus, a slow bus and a set of external
processors. The address manipulator chip 106 generates
addresses for system memory 108, which includes a left
memory bank 108A and a right memory bank 108B. System
15 memory is 32-bits wide, the high-order 16 bits of each
32-bit word being in left memory 1082 and the low-order
16 bits blkeing in right memory 108B. The CPU 102
addresses system memory only in words, but the address
manipulator chip 106 can address each half of the memory
20 entirely independently. Address manipulator chip 106
provides addresses and control signals to left memory
1082 over an LA bus 110 and an LCTL bus 112,
respectively, and provides addresses and control signals
to right memory 108B over an RA bus 114 and RCTL bus

25 116, respectively.
System memory 108 can include one or two "sets" of
video RAM (VRAM) and zero, one or two sets of DRAM. A
set VRAM contains 512 k bytes of left memory and 512 k
bytes of right memory, for a total of one megabyte. A
30 set of DRAM is, depending on the system configuration,
one, four or 16 megabytes long. As with VRAM, half of
each set is located in the left bank of memory and the
other half is located in the right bank of memory.
However, unlike VRAM, DRAM is always accessed in full

WO 94/10642 ’ PCT/US92/09350

-12-~

32-bit words. System memory 108 is considered
big-endian.
All of the left and right bank system memory sets
receive the respective left and right half addresses
5 generated by the address manipulator chip 106. All of
the left bank sets also include a data port which are
coupled bi-directionally with a 1left half data bus
D(31:16) 118. Similarly, the data ports of all of the
sets of right bank memory are coupled bi-directionally
10 with a right half data bus D(15:0) 120. The VRAM sets
also have a serial port S, which is coupled
bi-directionally with an S$(31:0) bus 122,
Address manipulator chip 106 also provides and
receives control signals to and from the CPU 102 over
15 lines 128, and is also coupled bi-directionally with the
left and right data buses 118 and 120. Address
manipulator chip 106 also interfaces to a slow bus 130,
which is an 8-bit bus for accessing such devices as a
_ CPU ROM 132, a battery-backed SRAM, and/or various front
20 panel devices 134. It may also support additional CPU-
accessible RAM, and may also support an FM sound
generator device. The slow bus 130 includes 14 bits of
the address bus 104 A(16:2), an 8-bit data bus PD(7:0),
a PDRDB read strobe, a PDWRB write strobe, and various
25 control lines. PDRDB and PDWRB are used to carry the
two low-order address lines for accessing the 8-bit wide
CPU ROM 132.
Address manipulator chip 106 also interfaces to a
player bus 136, which is used to connect the system to
30 various user input/output devices such as joysticks, 3-
D glasses, hand controllers and steering wheels, and and
game saver cartridges. Address manipulator chip 106 is
also coupled to a control bus 138, which is used to send
and receive control signals to and from other processors
35 in the system of Fig. 1..

WO 94/10642 _ PCT/US92/09350

-13-

The system of Fig. 1 further includes an
audio/video processor chip 140 which is coupled bi-
directionally to both halves 118 and 120 of the D-bus,
and coupled to receive data from the 32-bit wide S bus

5 122. Audio/video processor chip 140 is also coupled to
the control bus 138, and is coupled to receive address
bits A(15:2) from the system address bus 104. The
audio/video processor chip 140 generally includes
display path circuitry, an audio subsystem, timers, an

10 interrupt controller, an expansion bus interface and a
watchdog timer. The expansion bus interface couples to
an expansion bus 142 which includes control lines 144
and an 8-bit bus 146 carrying multiplexed address and
data information. The expansion bus 142 supports such

15 devices as CD/CD-ROM player 148 and optional expansion
bus RAM 150. The CD/CD-ROM player 148 is built into the
housing of the system of Fig. 1 and provides the primary
mechanism by which software (including the routines
described herein) is loaded into the system for

20 execution on the CPU 102.

The audio/video processor 140 communicates with
audio/video output circuitry 152 via audio lines 157,
control 1lines 156, and a 12-bit AD bus 158. The
audio/video output circuitry 152 generally generates the

25 video timing and output video waveforms. It provides a
composite video output, an RF output for connection to
a standard television, an SVHS output, and separate left
and right audio signal outputs.

The system of Fig. 1 also includes a decompression

30 co-processor 166 which is coupled to the control bus
138, to bits A(15:2) of the system address bus 104, and
to both halves 118 and 120 of the D bus. Decompression
co-processor 166 is used to decompress software which is
loaded into the system from the CD/CD-ROM player 148 or

35 from another source.

WO 94/10642] PCT/US92/09350

-14-

A section of system memory starting at address zero
and extending to either 0, 8, 16 or 32 K bytes, may be
defined as SYSRAM. The size selection is made by the
software. The address manipulator chip 106 contains

5 protections which prevent user software from writing to
or reading from SYSRAM. Only software running in the
supervisor mode of the CPU 102 may write to SYSRAM.

All of the system address and timing signals are
generated by the address manipulator chip 106. Any

10 requests for access to system memory from either the CPU
102 or the audio/video processor 140 pass through the
address manipulator chip 106.
Except for the allocation of SYSRAM, and except for
a 1 megabyte limitation on data structures which are
15 expected to be shifted out the S-port of a video RAM,
present only because of physical VRAM boundaries, the
restrictions on where various portions of a software
application may be located in system memory are minimal.
In a minimum system, with only one megabyte of system
20 memory (VRAM), the low 64k 32-bit words might contain
CPU instructions and data. The next 300k bytes might
contain uncompressed 8-bit image source data, and the
next 172k bytes might contain audio and other data. The
next 150k bytes might be allocated for one frame buffer
25 (320 by 240 pixels by two bytes per pixel), and the last
150k bytes might be allocated for a second frame buffer.

Frame buffers are arranged so that even number data
lines reside in the left memory bank and odd number data
lines reside in the right memory bank. Pixels are

30 represented as 16-bit values divided as follows: five
bits to represent a red pen number, five bits to
represent a green pen number, four bits to represent a
blue pen number, and two subposition bits H and V. 1In
an alternative data format, one of the H or V bits is

3% replaced by a fifth blue pen number bit. When a pixel

WO 94/10642 _ PCT/US92/09350

-15-

value is transmitted down the display path, a colorx

look-up table translates each 4- or 5-bit pen number to

an 8-bit value for the corresponding color DAC. The

color look-up table can be updated prior to each scan

5 line. Pixels are stored at a low resolution of 320 by

240 pixels per frame, and the H and V subposition bits

indicate which quadrant of the low-resolution pixel area

the designated color is actually considered to be
located in.

10 Fig. 2 is a symbolic block diagram showing major

functional units of the address manipulator chip 106 of

Fig. 1. It comprises an internal 32-bit MDT data bus

202, an internal 32-bit MADR address bus 204. The MDT

data bus 202 is coupled to the left and right half

15 system D-bus 118, 120 via buffers 222. The chip 106

also includes a CPU interface unit 206 which is coupled

to receive CPU-generated addresses over the A-bus 104,

and also communicates with the CPU 102 over control

lines 128. Among the control 1lines 128 is an MCLK

20 signal provided by the CPU interface 106 to the MCLK

input of CPU 102, which is the memory clock input of CPU

102. Address manipulator 106 controls the waveform of

this clock signal to both stretch CPU cycles for slow

accesses and to put the CPU 102 to sleep for long

25 periods of time. The ARM 60 CPU is a static part which

does not need maintain any minimum clock input
frequency.

Addresses generated by the CPU 102 are passed by

the CPU interface 206 to an address generator 208 when

30 a D-bus arbiter 210 grants control of the D-bus and

address generator 208 to the CPU 102. The address

generator 208 drives the high-order address bits from

A(31:16) onto the MADR bus 204, where they are decoded

by an address decoder 212. Address decoder 212

35 determines from these bits whether the desired address

WO 94/10642 PCT/US92/09350

-16-

represents a memory-mapped hardware register, in which
case it activates the appropriate select line to notify
the appropriate hardware component in the system of Fig.
1. That hardware component then performs the desired
5 function in response to bits A(15:2) of system address
bus 104. If address decoder 212 determines that the
desired address is part of system memory 108, then it so
notifies the address generator 208. Address generator
208 generates the appropriate addressing and control

10 signals on the LCTL and LA buses 112 and 110, and the
RCTL and RA buses 116 and 114.

Address generator 208 receives addresses from the
CPU via the CPU interface 206 and also from spryte
engine 214. Address generator 208 also maintains a

15 stack of DMA control information and can generate
addresses for DMA transfers. The D-bus arbiter 210
receives requests from the various devices for transfers
over the D-bus, arbitrates among them, and indicates to
address generator 208 which request to service. Even

20 though the two halves of system memory are addressed and
controlled separately, only one master may |Dbe
operatibnal at a time. If the winning requestor has
requested a DMA transfer, then the D-bus arbiter 210
supplies the address generator 208 with a DMA group

25 address indicating where in the DMA stack the desired
control information may be found for the requested
transfer. In effect, the DMA group address identifies
a particular DMA channel. The DMA interface is handled
entirely within the address manipulator chip 106.

30 The spryte engine 214 is coupled to the internal
MDT data bus 202, and the functions and operation of the
spryte engine 214 are described in more detail below.

Address manipulator chip 106 also includes a player
bus interface 216 and a slow bus interface 218, for

35 interfacing respectively to the player bus 136 and the

WO 94/10642 (PCT/US92/09350

-17-~

slow bus 130. These need not be described here in
detail.

D-bus arbiter 210 receives requests from various
requestors for access to the D-bus and D-port of system
5 memory 108. When D-bus arbiter 210 grants the bus to a
particular requestor, it sends an acknowledge signal to
the requestor. The details of the D-bus arbiter need
not be described here, except to note that the CPU 102
is intentionally given the lowest priority in the
10 arbitration for access to the D-bus port of system
memory 108 because in the architecture of Fig. 1, the
CPU 102 is conceived to perform housekeeping functions
only. All the other functional units in the system are
more tightly coupled with the memory than the CPU is, so
15 they can perform their functions at high speed. In the
past, the requirement that the CPU perform many of the
detailed functions of an interactive multi-media system
either 1limited the performance and realism of the
system, or mandated the use of a powerful and expensive

20 CPU, or both.

II. r Manipulation m
The spryte engine 214 (Fig. 2) is described in
detail in the related SPRYTE RENDERING SYSTEM WITH
25 IMPROVED CORNER CALCULATING ENGINE AND IMPROVED POLYGON-
PAINT ENGINE and IMPROVED METHOD AND APPARATUS FOR
PROCESSING IMAGE DATA applications. Without repeating
those descriptions, it 4is wuseful to note here that
whereas conventional imaging systems are built around
30 the concept of a *"sprite", the embodiment described
herein refers instead to a "spryte". The difference in
spelling is intentional. A conventional sprite consists
of a rectangularly-shaped area of image data, with all
scan lines of a conventional sprite having the same
35 length. A ‘“spryte", on the other hand, is defined

WO 94/10642 PCT/US92/09350

-18-

herein as a compilation of horizontal scan-lines
extending from, and to the right of, a vertical
(hypothetical) spryte edge line where each scan line
includes data representing a number of successive source
5 pixels. The 1length of each spryte scan-line is
independently controlled by an EOL (end-of-line)
terminating code or other appropriate means. The top
point on the spryte edge line is defined by a spryte
corner position. The total number of horizontal lines
10 which collectively define a spryte is given by a spryte
line count. A spryte can include scan-lines with no
pixels in them, and particular pixels within a spryte
can be designated as transparent. In effect, therefore,
a spryte can be thought of as having any shape that
15 might be desired.

ITIT. Address Generator 208
Fig. 3 is a block diagram of parts of address
generator 208 (Fig. 2). Fig. 4 is a block diagram of
20 stack address logic 336 (Fig. 3), and Fig. 5 is a block
diagram of the left and right address pad logic units
345, 353 (Fig. 3). These units are described in detail
in the above-mentioned AUDIO/VIDEQO COMPUTER ARCHITECTURE
application and need not be repeated here. It is
25 worthwhile noting, however, that CPU-originated
addresses and addresses originating from the spryte
engine are provided to the memory 108 via respective
input ports of a multiplexer 316. All other system
memory accesses are performed by DMA using the DMA stack
30 312.

The 128 22-bit registers in the DMA stack 312 are
organized in groups, each group storing the information
required to control a respective DMA "channel". Each
group is located at a respective fixed set of addresses

35 in the DMA stack 312, and each channel is predefined to

WO 94/10642 » PCT/US92/09350

-19-

control transfers from a particular source device to a
particular destination device. Table I sets forth
certain information about the channels used for the
spryte engine:

5 ABLE 1
Grouping No. Registers Looping Interrupts Transfers Channels Max DMA
Tvpe Groups Per Grp Available vailable Controlled Available Burst [en
10 Spryte Engine 1 8 No No Spryte control
data 1 7 words
PIP data 1 4 words
Spryte source
data start
15 address 1 1 word
Spryte image data 2 4 word
Iv. r B k
20 Before describing how spryte source data 1is

provided to the spryte engine 214, it will be useful to
describe a data structure known as a spryte control
block (SCoB). 2 SCoB controls the hardware operations
to be performed on a particular spryte. Before invoking
25 the spryte engine 214, the CPU 102 prepares a linked
list of such SCoBs in system memory 108, and then loads
a memdry—mapped register in the address generator 208 to
indicate where to find the first SCoB.
The SCoB data structure contains the words set
30 forth in Table II below.

WO 94/10642 , PCT/US92/09350

-20-
TABLE I
SCoB Data Structure
Number
5 of Bits Name Description
32 FLAGS Assorted flags. This is the first word read by the spryte-rendering
hardware. (The flag bits are detailed in below TABLE IIL.)

10 24 NEXTPTR Address of next SCoB to process. (Format is absolute or relative.)
Spryte rendition takes place by stepping through a linked list having
one or more SCoB’s. After a first source spryte is mapped to, and
painted onto a destination grid area defined by its SCoB, the spryte-
rendering engine processes the next SCoB, if any, and renders its

15 source spryte onto its designated destination surface. The linked
list can be circular if desired so that the process is repeated
iteratively.

24 SOURCEPTR Address in system memory 108 of image data that is to be rendered

20 as a spryte.

24 PIPPTR Address in system memory 108 of Pen Index Palette (PIP) that is

to be loaded into the IPS unit in spryte engine 214.

25 32 XPOS Horizontal position (in 640-max pixels format) in the destination
grid of the upper left corner of the to-be rendered spryte, including
16 bits which represent a fraction (noninteger) position-defining
portion.

30 32 YPOS Vertical position (in 480-max pixels format) in the destination grid
of the upper left corner of the to-be rendered spryte, including 16-
bit fraction part.

32 DX Horizontal position increment from mapped first corner of a source
35 pixel to mapped second corner of a source pixel when scanning and
re-mapping the first spryte row onto the destination grid (format
is two 16-bit half-words which are expressed in integer.fraction form
as: 12.20).

40 32 DY Vertical position increment from mapped first corner of a source
pixel to mapped third corner of a source pixel when scanning and
re-mapping the first spryte row (12.20).

- 32 LINEDX Horizontal position increment in destination grid from top left
45 corner of 1st mapped spryte row to top left corner of 2nd mapped
spryte row (16.16).
32 LINEDY - Vertical position increment from 1st line to 2nd (16.16).
50 32 DDX Increment to DX for each successive row after the 1st row of the
spryte being rendered (12.20).
32 DDY Increment to DY for each successive line processed (12.20) after
1st line.

55 32 PPMPC PPMP control word (two halfwords: 16, 16) (See Table IV).

WO 94/10642

10

15

20

25

30

35

40

32 PREO
32 PRE1

PCT/US92/09350

-21-

Possible 1st preamble word.

Possible 2nd preamble word.

The bits of the FLAGS word specified above are
defined as set forth in Table III. These flag bits
control specific fetching and rendering operations of

the spryte-rendering engine 214. The data specific

control bits are found in the preamble word of the

source data.

Bits Name
B31 =SKIP
B30 =LAST
B29 =NPABS
B28 =SPABS
B27 =PPABS
B26 =LDSIZE
B25 =LDPRS
B24 =LDPPMP
B23 =LDPIP
B22 =SCoBPRE
B21 =YOXY

B20:B19 = xx
B18 =ACW
B17 =ACCW
Bl16 =TWD

TABLE I
ELAGS Word

Descrioti
If set, skip this SCoB. .

If set, this is the last SCoB to process.

1=Absolute, 0=Relative address for NEXTPTR.

1=Absolute, 0=Relative for SOURCEPTR.

1=Absolute, 0=Relative for PIPPTR.

Load 4 words of size and slope data. (DX, DY, LINEDX, LINEDY).
Load 2 words of perspective (skew control) data. (DDX, DDY).
Load new PPMP control word (PPMPC) into PPMP control registers.
Load new PIP data into PIP.

Preamble location. 1=At end of SCoB, 0=At start of source data.

Translate the XY values to a system memory address value and write the
corresponding data to the hardware.

Reserved.
Allow rendering of a CW (clock-wise) oriented destination pixel.
Allow rendering of a CCW oriented destination pixel.

Terminate rendition of this Spryte if wrong direction is encountered (CW-

CCW).

WO 94/10642 PCT/US92/09350

-22~-
B15 =LCE Lock the operations of the 2 corner-calculating engines together. (at H
change).
Bi14 =ACE Allow the second corner-calculating engine to function.
5 B13 =ASC Allow Super-Clipping (the local switch is ANDed with ASCALL).

B12 =MARIA 1=disable full-math region-fill action and use only the faster Munkee
decisions as instructions to the destination line-filler.

10 B11 =PXOR 1=set PPMP XOR mode. (XOR the A and B sources while disabling
adder.)

B10 =USEAV 1=use the "AV" bits in PPMPC to control PPMP math functions.

15 B9 = PACKED Primary source spryte type, 1=packed, 0=totally literal. (Secondary source
spryte is always totally literal.)

B8:B7 = DOVER D-Mode override. 00=use the D-bit generated by the IPS unit to select the
output of CMUX , 0l=reserved, 10=select the A input of the CMUX,
20 11=select the B input of the CMUX.

B6 = PIPPOS Use PIP generated bits as the subposition bits (B0 & B15 of the Output-
PEN signal) instead of the SCoB selection made below by B1SPOS and
BOPOS.

25 B5 = BGND 1=background spryte type.
B4 = NOBLK 1=no black spryte type.

B3:B0 = PIPA PIP address bits, these are used to pad the 5-bit wide PIP address input
30 signal when BPP (Bits Per Pixel) output of unpacker is less than 5 bits
wide.

The PPMP control word (PPMPC) has two 16-bit wide

35 halves. One half is used when the CMUX select control

bit=0, the other half is used when the CMUX select

control bit=1. The bits of only the upper half are

defined as set forth in Table IV. The lower half has
identical structure.

40 TABLE IV
PPMPC Word
45 Bits Name Description

B3l =81 Select 1st multiplier input signal. 0=use IPN (Source A), 1=use ¢FB data
(Source B).

WO 94/10642 PCT/US92/09350

-23-

B30:B29 = MS Select 2nd multiplier input signal. 0=MxF (source is SCoB), 1=MUL
(source is IPS), 2=IPNM (source is IPS), 3=xx (multiply by default value,
1 or 0).

5 B28:B26 = MxF Multiply Factor. 0->7 means multiply by 1->8. (only used if MS=0).

B25:B24 = Dvl First divide-by Scaling-factor. 1=divide by 2, 2=divide by 4, 3=-+8, 0=divide
by 16.

10 B23:B22 = 82 Selector of secondary input signal. 0="apply 0 value to Adder port B",
1=use AV word (from SCoB), 2=use cFBD (Source B), 3=use IPS output
(Source A).

B21:B17 = AV Adder Value. 5 bit value to be added if S2=1. This 5-bit signal is also used
15 as a math control word if USEAV=1,

B16 = Dv2 Post addition, 2nd divider. 0=divide by 1, 1=divide by 2.

20 Aside from providing an "add value", the AV bits
serve a secondary function as follows when USEAV=1. The
secondary functions are set forth in Table V.

TABLEV
25 Secondary AV Bit Functions
Bits Function
AV0 = Invert the output of the second divider in the PMPP and set the carry-in of the
30 adder.
AV1l = Enable the sign-extend function for the signals flowing down the second math side

of the PMPP (Post possible XOR).

35 AV2 = Disable the wrap-limiter function. (Use the 5 LSB’s of the 8-bit adder output and
ignore possibility that it wrapped above decimal 31 or below decimal zero.)

AV3:AV4= Select second side divider value as: 00=divide by 1, 01=divide by 2,
10=divide by 4, 11=divide by __ (reserved).

40 There is also a general spryte-rendering engine
control word, referred to as SCOBCTLO. It is loaded
only by the CPU. 1Its bits are set forth in Table VI.

WO 94/10642 _ PCT/US92/09350

-24-
TABLE VI
B ngi rol Wor
5 Bits Name Description
B31:B30 = B15POS B15 oPEN selector for output of PMPP. (This bit can function as
a subposition defining bit that is used by the pre-display
interpolater.) 0=0, 1=1, 2=xx, 3=same as Source data
10 B29:B28 = BOPOS B0 oPEN selector for output of PMPP. (This bit can also function
as a subposition defining bit that is used by the pre-display
interpolater.) 0=0, 1=1, 2=PPMP math, 3=same as Source data
B27 = SWAPHV 1=Swap the H and V subpositions prior to their entry into the
15 PPMP
B26 = ASCALL 1=Allow super clipping function (master enable switch)
B25 = XX Reserved
20 B24 = CFBDSUB1=use the H and V subposition bits of the cFB data in place of
(vice) the spryte source values when the cFB data is selected as a
PPMP source. (Note: CFBDsel=(S1=1) OR (S2=2).)
B23:B22 = CFBDLSB ¢FBD PPMP Blue LSB source. 0=0, 1=cFBD[B0], 2=cFBD[B4],
25 3=x
B21:B20 = IPNLSB IPN PPMP Blue LSB source. 0=0, 1=IPN[B0], 2=IPN[B4], 3=x
30 Note that when ’‘relative’ has been specified in the

flags for NEXTPTR, SOURCEPTR, or PIPPTR, the value that
should (must) be placed in the SCoB is the word distance
from the address in RAM that has the relative value in
it to the address in RAM that is desired to be the new
35 address MINUS FOUR. (REL= Target - PC - 4). Also note
that the BOPOS value of '2’ is the only setting that
uses PPMP math to control the BO bit in the actually
output oPEN signal. When this setting is chosen, the
Blue LSB will also be included in the input parameters
40 of the black detector.

There are 2 basic formaté of Spryte image data,
totally literal format and non-totally literal format.
There are sub-groups within each basic format. In non-
totally 1literal Sprytes, the image data consists of

WO 94/10642 _ PCT/US92/09350

-25-

groups of words that represent source scan lines of

data. In totally 1literal Sprytes, the image data
consists of purely image data (no intermingled control
functions).

5 Non-totally 1literal Sprytes require one word

preamble, whereas totally literal Sprytes require two
words of preamble. These preamble words may be located
at the end of the SCoB words (but before the PIP) as set
forth in Table II, or at the start of the image data.
10 The normal location for these words is at the start of
the image data, but for totally literal Sprites that are
in frame buffer format, they are typically at the end of

the SCoB that invokes that spryte.
Non-totally literal Sprytes can be compacted to
15 save both memory space and rendering time. Each source
scan line of data has its horizontal word size specified
as part of the data. Totally literal Sprytes have a
rectangular format that is specified in the preamble of

the data.
20 The first preamble word for all sprytes is the data
structure preamble. It contains the data-specific

control bits for the source data, defined in Table VII.

TABLE VII

25 First Spryte Data Preamble Word

B31->B21 = Reserved, set to 0.
30 B20 = PACKED. This is identical to the PACKED bit in the SCoB

B19->B16 = Reserved, set to 0.

B15->B6 = VCNT Vertical number of source data lines in this image
35 data, minus 1. (10 bits)

B5 = Reserved, set to 0.

B4 = LINEAR. 0O=use PIP for generating IPN output of IPS unit,

40 ‘ 1=use PIN for outputting IPN.

WO 94/10642 PCT/US92/09350

-26-
B3 = REP8 1=réplicate the bits in the linear 8 Spryte, 0=fill
with 0.
5 B2->B0 = BPP Bits/pixel, pixel type.

VCNT is loaded into a hardware counter in the Spryte
requestor and is decremented at the end of the fetching

10 of each source scan line of data. When the count is at
-1, there are no more source lines of data in the -
object. Note that Spryte processing does not end here,
this is merely one of the events that is required to end
a Spryte. VCNT = line count -1.

15 An initial value of -1 for VCNT will cause a "REAL
BIG Spryte" to be fetched. There is no ‘zero line
count’ value.

The LINEAR bit applies only when the BPP type
indicates 8 bits per pixel or 16 bits per pixel. In

20 those cases, there are enough PIN bits to provide a 15
bit IPN without using the PIP. Since the PIN bits are
spread linearly across the IPN, and it will result in a
linear translation from PIN to IPN, the mode is called
'LINEAR’. The LINEAR bit should be set only for sprytes

25 having 8 or 16 bits per pixel, known as LINEAR 8 and
LINEAR 16 (as opposed to ‘normal’ 8 or 16) format.

The REP8 bit is effective only in the 8 bit per
pixel source data size.
Table VIII defines the BPP control bits decode.

30 TABLE VIII
BPP Field

BPP DataSize PIP DMA Size IPN Trans Bits D-bit R-Mul G-Mul B-Mul
35 0 = Reserved 4 PIP words Reserved ‘ 0 0 0

1= 1bit 4 PIP words PIN{0] PIP[15] © 0 0

2= 2bit 4 PIP words PIN[1:0] PIP{15] © 0 0

3= 4bit 8 PIP words PIN[3:0] PIP[15] O 0 0

4= 6bit 16 PIP words PIN[5:0] PIN[S] © 0 0
40 5= 8hit 16 PIP words PINJ7:0}] PIP{15] PIN[7:5] PIN[7:5] PIN[7:5}

6= 16 bit 16 PIP words PIN[14:0] PIN[15] PIN[13:11] PIN10:8] PIN[7:5}

7 = Reserved 16 PIP words Reserved 0 0 0

WO 94/10642 ' PCT/US92/09350

-27-

If thé PACKED bit in the SCoB is '0’, then the
source data is totally 1literal. For totally literal
5 Sprytes, there is a second preamble word. It contains,
among other things, the horizontal pixel count for each
‘line of the source data and the word offset from one
line of source data to the next. These bits are valid
only while the totally literal Spryte is being rendered,
10 and they are not used when the current Spryte is not
totally literal. The bit fields of the second preamble
word are defined in Table IX.
Table IX
15 n I T

B31->B24

WOFFSET(8). Word offset from one lire of data to the next (-2) (8 bits).
Bits 23->16 of offset are set to 0.

20 B25->B16

WOFFSET(10). Word offset from one line of data to the next (-2) (10
bits). Bits 31->26 of offset are set to 0.

B15 = Reserved, Set to 0.
25 B14 = NOSWAP 1=disable the SWAPHV bit from the general spryte
control word.
Bi3->B12 = TLLSB IPN PPMP blue LSB source. 0=0, 1=IPN[0], 2=IPN[4],
3=IPN[5].
30 B11 = LRFORM Left/right format.
B10->B0 = TLHPCNT Horizontal pixel count (-1) (11 bits).
35 The TLLSB bits perform the same function that the

IPNLSB bits perform in normal Sprytes.

If LRFORM=1, the source data has the frame buffer
format of the screen as a source format. Vertically
adjacent pixels in the rectangular display space are

40 horizontally adjacent in the 2vhalves of a memory word.
This is useful for the 16 bit per pixel totally literal
data format. The unpacker in spryte engine 214 will
disable the ’'B’ FIFO data requests and alternately place

WO 94/10642 PCT/US92/09350

10

15

20

25

30

35

-28-

pixels from the source into both FIFOs. Left 16 bits go
to ‘A’ FIFO, right 16 bits go to ‘B’ FIFO. The data
requests for ‘A’ FIFO are made in a request ‘pair’ to
minimize page breaks and other latencies. The hardware
locks the corner engines to operate together (regardless
of the LCE bit).

TLHPCNT is the number of pixels in the horizontal
dimension, minus 1. This is the number of pixels that
the spryte engine 214 will attempt to render for each
horizontal line of the Spryte source data. This wvalue
is used by the data unpacker. A ‘0’ value for TLHPCNT
will attempt one pixel. A '-1’ value will attempt many
pixels. There is no ‘zero pixel count’ value.

WOFFSET is the offset in words of memory from the
start of one line of data to the start of the next line,
minus 2. If the BPP for this Spryte indicates an 8- or
16-bit per pixel format, WOFFSET(10) or WOFFSET(8) is
appropriate. This number is zero for the minimum sized
Spryte (2 words).

By arranging WOFFSET and TLHPCNT correctly, it is
possible to extract a rectangular area of data out of a
larger sized rectangular area of data.

The address generator 208 will also use WOFFSET as
the length wvalue in the normal data fetch process.
WOFFSET and TLHPCNT must be set so that WOFFSET does not
expire first.

In the spryte packed data formats, the first one or
two bytes of data on each line of spryte source data
contain a word offset from the start of this line of
source data to the start of the next line of data, minus
2. In Sprytes having six or fewer bits per pixel, only
1 byte (bits 31:16) cf offset are used. However, the
actual offset has a maximum size of 10 bits. The rest
of the bits in the 2 bytes are set to 0. 10 bits of
word offset is 2048 pixels at 16 bits per pixel. 8 bits

WO 94/10642 PCT/US92/09350

-29-

of word offset at 6 bits per pixel is 1365 pixels. The
requirement is 1280 pixels.
This offset is used by the address generator 208
both to calculate the start of the next line of spryte
5 source data (by adding it to the start of the current
line), and to set the maximum length (by subtracting 1
and placing it in the DMA stack length register) for the
current DMA transfer.
Also in packed spryte data formats, the next data
10 after the offset is a control byte and zero or more bits
of PIN data. The number of bits used for each PIN is
specified by BPP.
The control byte consists of a 2-bit code and a 6-
bit count, as follows:
15 00xxxxxx end of line, xxxxxx need not be present
Olcount literal PINs for ‘count+l’
10count Defined ’'transparent’ for ‘count+1’
llcount packed ‘PIN’ for ‘count+l’

20 The ‘transparent’ definition will actually output a
'transparent’ bit from the unpacker. This will cause
the remainder of the pixel processing pipe to ignore
this pixel.

25 V. r Rendering Pr
In order to render a spryte into an area of system
memory 108, the CPU 102 first sets up the required data
in a different area of the system memory 108. Such data
includes 6 to 15 32-bit words as specified in Table II
30 above, all located contiguously in system memory 108; 4,
8 or 16 optional 32-bit words contiguously located in
system memory 108 to represent PIP data; and spryte
image data of any length. Of the 6 to 15 words
specified in Table II, note that several groups are
35 optional as set forth more fully below. Note also that

WO 94/10642 PCT/US92/09350

10

15

20

25

30

35

-30-

the second word of the SCoB is a pointer to the next
SCoB to process; thus, the CPU may create a linked list
of any number of SCoBs to process in sequence, each
defining its own spryte source data, optional PIP data,

and spryte rendering control information.

Also prior to starting the spryte engine, the CPU
102 writes desired information directly into certain
memory-mapped hardware registers as follows:

SCOBCTLO. 32-bit word defined in Table VI above.

REGCTLO. Controls the modulo for reading source
frame buffer data into the primary and/or secondary
input port of the spryte engine 214 and for writing
spryte image result data from the spryte engine 214 into
a destination frame buffer in system memory 108. The
modulo effectively indicates the number of pixels per
scan line as represented in the respective frame buffer
in system memory 108.

Only the low-order 16 bits of REGCTLO are used. The
low-order 8 bits specify the modulo for the source frame
buffer, and the next 8 bits speciff the modulo for the
destination frame buffer. For each of the two modulo
designations, the low-order 4 bits specify a G1 value
and the high-order 4 bits specify a G2 value. The
modulo specified for a particular buffer is then
calculated as G1+G2. Thus the following bits of REGCTLO
are defined (CFBD refers to current frame buffer data,
a source buffer separate from spryte source data, which
the spryte engine may read as input data):

REGCTIO BIT DESCRIPTION
G1=32 for CFBD read buffer.
Undefined. Set to 0.

G1=256 for CFBD read buffer.
G1=1024 for CFBD read buffer.
G2=64 for CFBD read buffer.
G2=128 for CFBD read buffer.

G2=256 for CFBD read buffer.
Undefined. Set to 0.

NGB WD - O

WO 94/10642

10

15

20

25

30

35

PCT/US92/09350
- 3 1 -

8 G1=32 for destination buffer.
9 Undefined. Set to 0.

10 Gl1=256 for destination buffer.
11 G1=1024 for destination buffer.
12 G2=64 for destination buffer.
13 G2=128 for destination buffer.
14 G2=256 for destination buffer.
15 Undefined. Set to 0.

The software must ensure that no more than one bit
in each nibble is set. The hardware does not protect
against setting more than one bit. 1If no bits are set
in a nibble, the contribution to the resultant modulo is
zero.

REGCTL1. X and Y

number of pixels

clip values, effectively
X and Y
Bits 26:16
indicate the last writeable row (counting from row 0) in
10:0 last
(counting from col. 0) in the X
All other bits must be zero. As an example,
a2 value of OOEFO13F indicates that the frame buffer data

is represented in 320x240 format.
RE L2.

in system memory 108 of the upper left corner pixel of

indicating the in the

dimensions which make up the frame buffer.
the Y dimension and bits indicate the
writeable column

dimension.

Read base address. Indicates the address
the source frame buffer data.

REGCTL3. Indicates the
address in system memory 108 of the upper left corner
pixel of the destination frame buffer (CFBD).

Also before the spryte engine is started, the CPU
102 places the address of the first SCoB in the linked
list into the DMA stack 312 register corresponding to
"next SCoB".

Write base address.

The CPU then writes to the memory mapped
address designated SPRSTRT in order to start the spryte
engine running. Once the spryte engine starts running,
it retains exclusive control of the D-bus until either
it finishes processing all the SCoBs in the list, or an

interrupt occurs. If an interrupt occurs, the spryte

WO 94/10642 PCT/US92/09350

-32-

engine continues to a convenient stopping point, then

releases the D-bus. The CPU then vectors to an

appropriate interrupt handler, and when done, returns to

the routine which originally started the spryte engine.

5 That routine checks the status bit SPRON in a memory

mapped status bit register to determine whether the

spryte engine stopped due to an interrupt or due to

completion of processing, and if the former, restarts

the spryte engine. In an alternative embodiment, the

10 CPU can have a separate bus to program memory, to

‘thereby permit the CPU 102 to perform other tasks while

the spryte engine 214 renders the sprytes. In the

latter embodiment, the spryte engine can generate an

interrupt for the CPU 102 when spryte processing has

15 completed, at which time the CPU 102 can vector to an
interrupt handler.

The DMA stack 312 includes an 8-register grouping

for spryte control. The eight registers are as follows:

CURRENT SCOB ADDRESS
NEXT SCOB ADDRESS

PIP ADDRESS

SPRYTE DATA ADDRESS
ENGINE A FETCH ADDRESS
ENGINE A LENGTH

ENGINE B FETCH ADDRESS
ENGINE B LENGTH

20

25

No s W= O

When the CPU writes to the SPRSTRT address, after

the spryte engine gains control of the system data bus

30 118, 120, the DMA engine of Figs. 3 and 4 loads in the
first six words from the first SCoB beginning from the
system memory address specified in the NEXT SCOB
register in the DMA stack 312. To accomplish this, the
address of the first word to load is read out of the

35 NEXT SCOB register and provided to the memory address
lines via source multiplexer 314. The address is also
incremented by adder/clipper 320 and written back via
multiplexer 310 into the CURRENT SCOB register in DMA

WO 94/10642 PCT/US92/09350

-33-

stack 312. All six words are read from memory in this
manner, the CURRENT SCOB register maintaining the
address of each next word to load.

The first SCoB word read, FLAGS, is written into a
5 32-bit hardware register in address manipulator chip
106. The next SCoB word read, NEXTPTR, is written into
the NEXT SCOB register in DMA stack 312. SOURCEPTR is
written into the SPRYTE DATA ADDRESS register of DMA
stack 312, and PIPPTR is written into the PIP ADDRESS
10 register in DMA stack 312. XPOS and YPOS are written to
two memory mapped hardware registers XYPOSH and XYPOSL,
each having the format of x,y. That is, the high-order
16 bits from XPOS and the high-order 16 bits from YPOS
are written to the high- and low-order half words,
15 respectively, of XYPOSH, and the low-~order 16 bits of
XPOS and the low-order 16 bits of YPOS are written to
the high and low half words, respectively, of XYPOSL.
After the first six words of the SCoB are 1loaded,
depending on the bits which were set in FLAGS, up to
20 seven additional SCoB words are loaded. The possible
words are grouped as a single DMA transfer of up to
seven words. If the LDSIZE bit of FLAGS was asserted,
then the DMA controller of Figs. 3 and 4 expects the
first four words of this group of seven to be DX, DY,
25 LINEDX and LINEDY. These words are loaded in the same
manner as the first six woxrds of the SCoB, the
incremented addresses being stored in the CURRENT SCOB
register in DMA stack 312. DX and DY are written in x,y
- format into two memory mapped hardware registers DXYH
30 and DXYL, and LINEDX and LINEDY are written in x,y
format to two memory mapped hardware registers DDXYH and
DDXYL. Note that if the SKIP bit of the FLAGS word
equals one, indicating that the present SCoB is to be
skipped, or if the YOXY bit is zero, then the X and Y

35 values are not written to the hardware.

WO 94/10642 : PCT/US92/09350

-34-

If the LDPRS bit of FLAGS was set, then the DMA
control unit of Figs. 3 and 4 expects the first two
words (or the next two words) of the optional seven to
contain DDX and DDY. These are written in x,y format to

5 two memory mapped hardware registers DDXYH and DDXYL.

If the LDPPMP bit of the FLAGS word was set, then
the DMA control unit of Figs. 3 and 4 expects the first
(next) word of the optional seven words to be PPMPC.
This word is written to a memory mapped PPMPC hardware

10 register.

After the second SCoB load of zero through seven
words, the DMA control unit of Figs. 3 and 4 performs a
preamble load of either one or two words. If the
SCOBPRE bit of FLAGS was set, then the preamble word(s)

15 is (are) assumed to be at the end of the SCoB, in which
case the CURRENT SCOB register in DMA stack 312 contains
the address of the first preamble word. 1If SCOBPRE was
not set, then the preamble word(s) is (are) assumed to
be at the start of the data, in which case the SPRYTE

20 DATA ADDRESS contains the address of the first preamble
word. The DMA control unit selects the appropriate
register source for the starting address of the preamble
load and returns the incremented addresses to the same

register.
25 The first preamble word is always present and is
loaded into the appropriate hardware registers. The

second preamble word is present only when the PACKED bit
of the FLAGS word was zero, indicating that the spryte
image data is in "totally literal" format. When the DMA
30 unit reads this word, the information in the WOFFSET
field is written to an offset register and the
information in the TLHPCNT field is written to a pixel
count register in the hardware. The offset indicates
the width of the totally literal spryte in memory, and
35 is used by the DMA controller to calculate the start of

WO 94/10642 PCT/US92/09350

-35-

each next line of the spryte source data. The pixel
count indicates the number of pixels to be transferred
on each scan line of totally literal spryte source data.
These two values are settable independently in order to

5 permit the transfer of only a rectangular portion of a
larger bit image, smaller than the overall bit image
both in width and height.

After the preamble load, if the LDPIP bit of the
FLAGS word was set, the DMA control unit will read out

10 4, 8 or 16 words of PIN to IPN conversion information,
beginning from the address in the PIP ADDRESS register
in the DMA stack 312. Incremented addresses are also
rewritten into the same DMA stack register. The number
of 4-word bursts to perform (if any) depends on the data

15 compression format of the spryte image source data,
which is specified in the BPP ("bits per pixel") field
of the first preamble word. In particular, as set forth
in Table VIII above, a total of four PIP words will be
loaded for BPP = 0, 1 or 2; eight PIP words will be

20 loaded if BPP = 3; and 16 PIP.words will be loaded if
BPP = 4, 5, 6 or 7. Note that since PIP data in system
memory 108 is referenced indirectly, the same PIP data
may be downloaded from multiple SCoBs. Also, the PIP
may be loaded even if it will not be used to decompress

25 the current spryte image source data (which is the case
if the LINEAR bit of the first preamble word is one).
For loads of all 16 PIP words, the entire PIP is
overwritten. For loads of fewer than 16 words, the PIPA
field of the FLAGS word indicates the starting address

30 in the PIP for receiving the data.

After the PIP load, the DMA unit of Figs. 3 and 4
begins transferring spryte image source data from system
memory 108 to the data input FIFOs of the spryte engine
214. As set forth above, if the spryte image source

35 data is packed (i.e. not in totally literal format),

WO 94/10642 PCT/US92/09350

-36-

then at the beginning of each scan line of spryte source

data, the first one or two bytes of the first word

contain a word offset from the start of the current line

of source data to the start of the next line of source

5 data, minus 2. This offset is wused by the DMA

controller both to calculate the start of each next line

of source data and to set the length of a DMA transfer

of the 1line of source data. Accordingly, the DMA

controller reads this word from the address specified

10 in the SPRYTE DATA ADDRESS register of the DMA stack

312, incrementing the address and placing it into the

ENGINE A FETCH ADDRESS register of the DMA stack 312,

The high-order 8 or 10 bits of this word are placed into

the ENGINE A LENGTH register of the DMA stack 312, and

15 the entire word is also sent to the spryte engine data

input FIFO for corner engine A. The spryte engine knows

to ignore this word. Note that if the spryte image

source data is in totally 1literal format, then the

single offset value (as well as the pixel count value)

20 specified in the second preamble word and described
above applies to the entire spryte.

After the offset is loaded, the DMA controller then
transfers additional words of spryte image source data
for the current scan line in bursts of up to four words

25 each, as requested by the spryte engine 214. The
starting address for each burst is found in the ENGINE
A FETCH ADDRESS register of DMA stack 312, and the
incremented addresses are placed in the same register.
Correspondingly, the DMA controller decrements the value

30 in the ENGINE A LENGTH register of DMA stack 312
according to the number of words transferred.

The DMA controller also updates the SPRYTE DATA
ADDRESS register in DMA stack 312 by adding the offset
specified in the first word of the scan line, so that

WO 94/10642 PCT/US92/09350

-37-

that register always points to the next scan line to be
processed.

Note that on the conditions described in the above-
mentioned SPRYTE RENDERING SYSTEM WITH IMPROVED CORNER

5 CALCULATING ENGINE AND IMPROVED POLYGON-PAINT ENGINE
APPLICATION, the spryte engine 214 can also request DMA
transfers of 4-word bursts of the next scan line of
spryte image source data into the corner engine B data
input FIFO, using the ENGINE B FETCH ADDRESS and ENGINE

10 B LENGTH registers. In this manner, both corner engines
A and B in the spryte engine 214 can operate on
different scan 1lines of spryte image source data
simultaneously, and the DMA controller can burst data to
each as independently requested.

15 Note that there are a number of invalid SCoB bit
settings which are not protected against in the
hardware. The software must ensure that these
combinations are never asserted. Among these
combinations are:

20 1. If the LINEAR bit is set in the first spryte
data preamble word, and BPP is set for 8 bits per pixel,
then the D-mode selection in the DOVER field of the
FLAGS word must not be set to use the choice determined
by BPP. '

25 2. If LINEAR is selected, then BPP must be set to
be either 8 or 16 bits per pixel.

3. The BPP field and the LINEAR setting in the SCoB
must match the format of the incoming source data. 1If
they do not, then the results are unpredictable.

30 These are some examples; there are many others.

VI. re R i
Before setting forth software routines which may be
used for implementing the invention, it will be useful

WO 94/10642 PCT/US92/09350

-38-

to set forth the following C language type definitions
and macro definitions:
/* copyright 1892 The 3DO Company */

5 /* The SCB_RELATIVE macro takes the absolute address of an object and returns

* the sort of relative address needed by the spryte engine. The first
* argument is the absolute address of the field to receive the relative
* address, and the second argument is the absolute address of the object
* to be referenced.

10 * For instance, to create a relative pointer to a “next spryte"
* these arguments would be used:
* SCB_RELATIVE(&spryte->scb_NextPtr, &NextSpryte);
* To make sure the spryte indicates that the pointer to the next spryte is
* relative, it might be desireable to first explicitly clear the control fiag:

15 * ClearFlag(spryte->sch_Flags, SCB_NPABS);

*

#define SCB_RELATIVE(field,linkobject) ((long)(linkobject)-(long)(field)-4)

#define RGB(a,b,c) (((8) < <10)}((b)< <5)|(¢))
20 #define RGB2(a,b,c) (RGB(a,b,c)*0x00010001)

#define COLORENTRY(index,r,g,b) ((((uint32)(index) < <24) | ((uint32)(r) < < 16) \
| ((uint32)(g) < <8) | ((uint32)(b))))

25 #define MAKE_REGCTL1(width,height) (((width-1)< <REG_XCLIP_SHFT)\
o | ((height-1)< <REG_YCLIP_SHFT))

typedef long Color;
30 typedef long Coord;
typedef long RGBB8S;

typedef struct Point
35 {
Coord point_X, point_Y;
} Point;

40 typedef struct Rect

{
Coord rect_XLeft, rect_YTop, rect XRight, rect YBot;
} Rect;

45 A. Screen and Bitmap Routines
The spryte engine 214 is advantageously controlled
using three software data structures known as Screen,
ScreenGroup and Bitmap. These structures are owned by
the system as opposed to a user task, and in order to
50 prevent illegal combinations of control information from
reaching the hardware, the information in these
structures can be modified only by a routine running in
the supervisor mode of the CPU 102. The following are

WO 94/10642

10

15

20

25

30

35

40

45

50

55

-39-

PCT/US92/09350

type definitions for the Screen, ScreenGroup and Bitmap

data structures.
/* copyright 1992 The 3DO Company */
typedef struct Screen

ltemNode scr;

ScreenGroup *scr_ScreenGroupPtr;

VDLEntry *scr_VDLPtr;
int32 scr_VDLType;

Bitmap *scr_TempBitmap;
List scr_BitmapList;
} Screen;

typedef struct ScreenGroup
{ltemNode sg;

/* display location, 0 == top of screen */
long sg_Y;

/* total height of each screen */
iong sg_ScreenHeight;

/* display height of each screen (can be less than the screen’s

* actual height)
*

long sg_DisplayHeight;
} ScreenGroup;

typedef struct Bitmap
ltemNode bm;
ubyte *bm_Buffer;

int32 bm_Width;

int32 bm_Height;

int32 bm_ClipWidith;
int32 bm_ClipHeight;
int32 bm_VerticalOffset;
int32 bm_Flags;

int32 bm_SCOBCTLO;
int32 bm_REGCTLO;
int32 bm_REGCTL1;
int32 bm_REGCTL2;
int32 bm_REGCTLS;
} Bitmap;

the

certain global information

As can be seen,

Bitmap structure includes

about a destination buffer

WO 94/10642 PCT/US92/09350

10

15

20

25

30

35

40

-40~

(typically but not exclusively a display buffer) into
which the spryte engine 214 is to render sprytes. Such
global information includes the base address of the
buffer (bm_Buffer), its width, height and
characteristics (bm_Width, bm Height and bm Flags,
iespectively), clipping widths and heights (bm_ClipWidth
and bm_ClipHeight) beyond which the spryte engine 214
need not render sprytes, a vertical offset value
(bm_VerticalOffset), and values for the five spryte
engine control registers (bm_SCOBCTLO, bm REGCTLO,
bm_REGCTL1, bm REGCTL2, bm_REGCTL3). The Screen
structure points to a Bitmap structure to be displayed,
and a ScreenGroup structure, as well as containing
certain other information about the display.

The following are some sample routines to
manipulate Bitmaps, ScreenGroups and Screens. Though
some of these routines are trivial, it is advantageous
that they be provided anyway as operating system routine
callable by a user program. In this manner they can run
in the supervisor mode of CPU 102.

/* copyright 1992 The 3DO Company */

int32
SetClipWidth(ltem bitmapltem, ulong clipwidth)
/* Set the bitmap’s clipping width */
{
int32 retvalue;
Bitmap *bitmap;

/* This routine needs to be in supervisor mode */

bitmap = (Bitmap *)Checkitem(bitmaplitem, NODE_GRAPHICS, TYPE_BITMAP);
if (NOT bitmap)
{

retvalue = -1201;
goto DONE;

}

if { clipwidth > bitmap->bm_Width)
{
retvalue = -1202;

goto DONE;
}

WO 94/10642 PCT/US92/09350

10

15

20

25

30

35

40

45

50

55

-41-

bitmap->bm_ClipWidth = clipwidth;
bitmap->bm_REGCTL1 = MAKE_REGCTL1(bitmap->bm_ClipWidth,
bitmap->bm_ClipHeight); ,

retvaiue = 0;

DONE:
return(retvalue);

int32

SetClipHeight(ltem bitmapitem, ulong clipheight)
/* Set the bitmap’s clipping height */

{

int32 retvalus;
Bitmap *bitmap;

/* This routine needs to be in supervisor mode */

bitmap = (Bitmap *)Checkitem(bitmapltem, NODE_GRAPHICS, TYPE_BITMAP);
if (NOT bitmap)

{

retvaiue = -1301;
goto DONE;

}

if (clipheight > bitmap->bm_Height)

retvaiue = -1302;
goto DONE;
}

bitmap->bm_ClipHeight = clipheight;
bitmap->bm_REGCTL1 = MAKE_REGCTL1(bitmap->bm_ClipWidth,
bitmap->bm_ClipHeight);

retvalue = 0;

DONE:
return(retvalue);

ltem
CreateScreenGroup(item *screenltemArray, CreateScreenArgs *stargs)
{
item sgitem;
ScreenGroup *sgpitr;
Screen *screen;
ltem retvalue;
int32 currentHeight, width;
VDLEntry *vd|, *vdI2, *vdI3, **vdiptr;
Bitmap *bitmap;
ltem bitmapitem;
ubyte **bufptr, **bufptr2, *zbufptr, *prevbufptr;
int32 *widthptr, *heightptr;
ltem *iptr;
int32 |, i2, i3, size, color;

/* This routine needs to be in supervisor mode */

SDEBUG({"CreateScreenGroup(screenltemArray=$%ix, stargs=%$%Ix\n",

WO 94/10642 PCT/US92/09350

-42-

screenltemArray, stargs));

retvalue = 0
sgitem = 0;
5 sgitem = SuperCreateltem(MKNODEID(NODE_GRAPHICS,TYPE_SCREENGROUP), NULL);

SDEBUGVDL((*Createltem returned 0x%x\n",sgitem));
if ((int32)sgitem < 0)

{
/* couldn’t allocate screen group item */

10 retvalue = -3001;
goto DONE;
}
/* Initialize the ScreenGroup item */
15 sgptr = (ScreenGroup *)Locateltem(sgitem);

SDEBUGVDL(("Locateltem returned 0x%x\n",sgptr));

sgptr->sg_DisplayHeight = stargs->st_DisplayHeight;
sgptr->sg_ScreenHeight = stargs->st | “ScreenHeight;

20 iptr = screenltemArray;
bufptr = stargs->st_BitmapBufArray;
vdiptr = stargs->st | “VDLPtrArray;
for (i = 0; i < stargs->st_ScreenCount; i++)

{
25 *jptr = SuperCreateltem(MKNODEID(NODE_GRAPHICS, TYPE_SCREEN),
NULL);
if(*iptr < 0)

retvalue = *iptr; /* couldn't allocate screen item */
30 goto DONE;

screen = (Screen *)Locateltem(*iptr);
screen->scr_ScreenGroupPir = sgptr;
iptr+ +;

35 SDEBUG(("screen=$%lIx\n", (unsigned long)(screen)));

InitList(&screen->scr_Bitmaplist, "ScreenBitmapList”);

heightptr = stargs->st_BitmapHeightArray;

40 widthptr = stargs->st_BitmapWidthArray;
currentHeight = 0;
for (i2 = 0; i2 < stargs->st_BitmapCount; i2+ +)

{
bitmapitem = SuperCreateltem(MKNODEID(NODE_GRAPHICS, TYPE_BITMAP),
45 NULL);
: if (bitmapitem < 0)

retvalue = bitmapitem; /* couldn't allocate bitmap item */
goto DONE;

50 }

bitmap = (Bitmap *)Locateltern(bitmapitem);

AddTail(&screen->scr_BitmapList, (Node *)(&bitmap->bm));

bitmap->bm_Buffer = *bufptr+ +;

55 if { widthptr) bitmap->bm_Width = *widthptr+ +;
else bitmap->bm_Width = GrafBase->gf DefaultDisplayWidth;
bitmap->bm_ClipWidth = bitmap->bm Width;
if (heightptr) bitmap->bm_Height = *heightptr+ +;
else bitmap->bm_Height = stargs->st ScreenHenght

60 bitmap->bm_ClipHeight = bitmap->bm_Height;
bitmap->bm_Flags = 0;

WO 94/10642 PCT/US92/09350

-43-
switch (bitmap->bm_Width)
{
case 32:
5 i3 = G1_RMOD32|G1_WMOD32; break;
case 64:
i3 = G2_RMOD64|G2_WMODG84; break;
case 96
i3 = G1_RMOD32|G2_RMOD64|G1_WMOD32|G2_WMOD64; break;
10 case 128:
i3 = G2_RMOD128|G2_WMOD128; break;
case 160:
i3 = G1_RMOD32|G2_RMOD128]G1_WMOD32|G2_WMOD128; break;
case 256:
15 i3 = G1_RMOD256|G1_WMOD256; break;
case 288:
i3 = G1_RMOD32]|G2_RMOD256|G1_WMOD32{ G2 WMOD256; break;
case 320:
i3 = G1_RMOD256|G2_RMOD64|G1_WMOD256|G2_WMOD64; break;
20 case 384:
A i3 = G1_RMOD256|G2_RMOD128|G1_WMCD256|G2_WMOD128; break;
case 512: .
i3 = G1_RMOD256|G2_RMOD256|G1_WMOD256|G2_WMOD256; break;
case 1024:
25 i3 = G1_RMOD1024{G1_WMOD1024; break;
case 1088:
i3 = G1_RMOD1024}G2_RMOD64|G1_WMOD1024|G2 WMODB4 break;
case 1052:
i3 = G1_RMOD1024|G2_RMOD128|G1_WMOD1024|G2_WMOD128; break;
30 case 1280:
i3 = G1_RMOD1024|G2_| RMOD256|G1 _WMOD1024 | G2_WMODZ256; break;
default:

SDEBUG(("CreateScreenGroup() bad bitmap width=%d ($%Ix)\n",
bitmap->bm_Width));
35 retvalue = -3007;
goto DONE;

}
bitmap->bm_ REGCTLO = i3;
bitmap->bm_REGCTL1 = MAKE_REGCTL1(bitmap->bm_ClipWidth,
40 bitmap->bm_ClipHeight);
bitmap->bm_REGCTL2 = (int32)bitmap->bm_Buffer;
bitmap->bm_REGCTL3 = (int32)bitmap->bm_Buffer;

bitmap->bm_SCOBCTLO = (0xC0000000 & B15POS_MASK)
45 | (020000000 & BOPOS_ MASK)
| (000400000 & CFBDLSB _MASK)
| (0x00100000 & IPNLSB_ MASK);

bitmap->bm_VerticalOffset = currentHeight;

50 currentHeight + = bitmap->bm_Height;
}
}
retvalue = sgitem;
55 DONE:

if (retvalue < 0)
{
if (sgitem > 0) SuperexternalDeleteltem(sgitem);

6 0 return(retvalue);

WO 94/10642 PCT/US92/09350

-44-~

DisplayScreen(item Screenltem0, ltem Screenitem1)

Screen *scr0, *scri;
5 ScreenGroup *sg;
int32 retvalue;

/* This routine needs to be in supervisor mode */
10 SDEBUGVDL(("DisplayScreen(%X, %x)\n", Screenltem0, Screenltem1));
scr0 = (Screen *)Checkitem(Screenltem0, NODE_GRAPHICS, TYPE_SCREEN);
if (Screenitem1)
scri = (Screen *)Checkltem(Screenitem1, NODE_GRAPHICS, TYPE_SCREEN);

15 else
scri = scrQ;

if (scr0 == NULL) || (scrt == NULL))

20 /* invalid screen items */
retvalue = -30089;
goto DONE;
}

25 sg = scr0->scr_ScreenGroupPtr;

if (sg NOT = scri->scr_ScreenGroupPtr)

/* screen items must be in the same screen group */

retvalue = -3010;
30 goto DONE;
}

/* Designate that these are the screens that should be displayed */
GrafBase->gf CurrentVDLEven = scrO->scr VDLPtr;

35 GrafBase-> gf:CurrentVDLOdd = scri-> scr_—VDLPtr,
retvalue = Q; '
DONE:
40 return(retvalue);
}

The following routine illustrates how to directly
45 modify a bitmap of a buffer.

/* copyright 1892 The 3DO Company */
int32
50 WritePixel(Item bitmapltem, Coord x, Coord y, Color color)
/* Write a pixel in the foreground color to the current screen */
ubyte *ptr; ‘
int32 retvalue;
55 Bitmap *bitmap;
/* This routine needs to be in supervisor mode */

bitmap = (Bitmap *)Checkltem(bitmapitem, NODE_GRAPHICS, TYPE_BITMAP);

WO 94/10642 PCT/US92/09350

-45-

if (NOT bitmap)

retvalue = -2001;
goto DONE;
5 }

if (x < 0 || x >= bitmap->bm_ClipWidth
|l y<0]|y>= bitmap->bm_ClipHeight)

10 retvalue = -2002;
goto DONE;
}
ptr = bitmap->bm_Buffer
15 + (((y >> 1) * bitmap->bm_Width) << 2)

+(y&1) << 1)+ (x << 2
*ptr++ = (ubyte)(color >> 8); -
*ptr = {(ubyte)color;

20 retvalue = 0;

DONE:
return(retvalue);

25 The following routines read bitmaps directly. They

do not need to be in supervisor mode.

/* copyright 1992 The 3DO Company */

30 void *
GetPixelAddress(ltem screenitem, Coord x, Coord vy)
/* Return the address of the specified pixel in the screen.
* A read outside the bitmap boundaries returns a value of NULL.
*/
35 {
void *retvalue;
Bitmap *bitmap;
Screen *screen;

40 /* This routine can be in user mode */
retvalue = NULL;

screen = (Screen *)Checkitem(screenitem, NODE_GRAPHICS, TYPE_SCREEN);
45 if (NOT screen) goto DONE;

bitmap = screen->scr_TempBitmap;
if (x <0 || x >= (bitmap->bm_ClipWidth)
50 |l y<0}|y>= (bitmap->bm_ClipHeight))
goto DONE;
retvalue = (void *)(bitmap->bm_Buffer
+ ({{y >> 1) * bitmap->bm_Width) << 2)
55 +((y&1) << 1) + (x << 2));

DONE:

WO 94/10642 PCT/US92/09350

-46~-

return(retvalue);

5 Color
ReadPixel(item bitmapltem, GrafCon *ge, Coord x, Coord vy)
/* Read a pixel from the graphics context and return its value.
* A read outside the bitmap boundaries returns a value of < 0.

*/
10 {
ubyte *pir;
Coilor retvalue;
Bitmap *bitmap;
15 /* This routine can be in user mode */
bitmap = (Bitmap *)Checkitem(bitmapitem, NODE_GRAPHICS, TYPE_BITMAP);
if (NOT bitmap)
20 retvalue = -2101;
goto DONE;
}
if (x < 0 || x >= bitmap->bm_ClipWidth
25 |l y<0]ly>= bitmap->bm_ClipHeight)
retvalue = -2102;
goto DONE;
}
30 ptr = (ubyte *)(bitmap->bm_Buffer
+ ({{y >> 1) * bitmap->bm_Width) << 2)
+ (& 1) << 1)+ (x<<2);
retvalue = { (Color)ptr[0] << 8) | (Color)ptr[1];
35 DONE:
return(retvalue);
40 B. Spryte Rendering Routines

As mentioned, the spryte engine 214 renders sprytes
in response to "spryte control blocks" (SCoBs) which
have been prepared and linked together in a list. The
software data structure for a SCoB (also called SCB) is

45 advantageously as follows:

/* copyright 1992 The 3DO Company */

/* Definition of spryte data structure */
50 typedef ulong SpryteDatal];

WO 94/10642 PCT/US92/09350

-47-

/* Definition of spryte control block */
typedef struct SCB

ulong scb_Flags;

5 struct SCB *sch_NextPtr;
SpryteData *scb_SpryteData;
void *scb_PIPPtr;

Coord scb_X;
10 Coord scb_Y;
long scb HDX;
long scb HDY;
long scb VDX;
long scb VDY;
15 long scb DDX;
long scb_DDY;
ulong scb_PPMPC;
ulong scb_PREQ;
ulong scb_PRET;
20 } SCB;

Once a linked list of SCoBs has been prepared, the
following supervisor mode routines may be used to
25 initiate the spryte engine 214:

/* copyright 1992 The 3DO Company */

int32

30 DrawScreenSprytes(ltem screenltem, SCB *scb)
/* Draw sprytes into the screen’s bitmaps, following the SCB chain */
{

Screen *screen;
int32 retvalue;

35 /* This routine should NOT be in supervisor mode */

SDEBUG(("DrawScreenSprytes(*));
SDEBUG(("screenltem=3%%Ix “, (unsigned long)(screenitem)));
SDEBUG(("scb=%%Ix ", (unsigned long)(scb)));

40 SDEBUG((")\n"));

screen = (Screen *)Checklitem(screenltem, NODE_GRAPHICS, TYPE_SCREEN);
if { NOT screen) ‘

{

45 retvalue = -1001;
goto DONE;
}

retvalue = DrawSprytes(screen->scr_TempBitmap->bm.n_lkem, scb);
50 goto DONE; ’

retvalue = 0;

DONE:
55 return(retvalue);

WO 94/10642

10

15

20

25

30

35

40

45

50

55

-48-

int32
DrawSprytes(ltem bitmapltem, SCB *scb)

/* Draw sprytes into the bitmap, foliowing the SCB chain */
{

int32 retvalue;
Bitmap *bitmap;

/* This routine should be in supervisor mode */
int32 timestamp;
SDEBUG(("DrawSprytes("));

PCT/US92/09350

SDEBUG(("bitmapltem=$%lx *, (unsigned long)(bitmapltem)));

SDEBUG(("sch=%%lx ", (unsigned long)(scb)));
SDEBUG((* \n"));

bitmap = (Bitmap *)Checkitem(bitmapltem, NODE_GRAPHICS, TYPE_BITMAP);

if (NOT bitmap)

retvalue = -2111;
goto DONE;
}

timestamp = GrafBase->gf VBLCount;

*SCOBCTLO = bitmap->bm_SCOBCTLO;
*REGCTLO = bitmap->bm_REGCTLO;
*REGCTL1 = bitmap->bm_REGCTL1;
*REGCTL2 = bitmap->bm_REGCTL2;
*REGCTL3 = bitmap->bm_REGCTL3;

*NEXTPTR = (ulong)scb;

*SPRSTRT = 0;
while(*STATBits & SPRON)

{
#ifdef AUTOKILL._SPRITE
if (GrafBase->gf VBLCount - timestamp >= 3)

{

*SPRSTOP = 0;
retvalue = -666;
goto DONE;

}
eise *SPRCNTU = 0;
#olse
*SPRCNTU = 0;
#endif /* #ifdef AUTOKILL SPRITE */
}

retvalue = 0;

DONE:
return(retvalue);

As previdusly mentioned, the

spryte engine 214 can

map a sprvte source image onto a quadrilateral (proper

WO 94/10642 PCT/US92/09350

~-49-

or degenerate) of any shape, given appropriate values in
the SCoB for that spryte. The following routine is
useful to help users calculate correct values for the
scb X, scb Y, scb HDX, scb_HDY, scb_VDX, scb_VDY,

5 scb_DDX and scb_DDY values in a SCoB, given the four
points of a destination quadrilateral in the destination
buffer.

/* copyright 1992 The 3DO Company */

10 void
MapSpryte{ SCB *scb, Point *quad, int32 width, int32 height)
/* Take a spryte and create position and delta values to map
* its corners onto the specified quadrilateral, whose points define the
15 * corners of the quadrilateral in clockwise order starting from top-left.
*
/

int32 size,
/* This routine should be in user mode */

20 size = width * height;
scb->scb X = ((quad[0).point_X < < 16) & Ox{ffi0000) + 0x8000;
scb->scb_Y = ((quad[0].point Y << 16) & Oxffff0000) + 0xBOOO;
scb->scb HDX = ((quad[1].point_X - quad[0].point_X) < < 20) / width;
, scb->scb_HDY = ((quad[1].point_Y - quad[0].point_Y) < < 20) / width;
25 scb->scb VDX = ((quad[3}.point X - quad[0]. point X) << 16) / height;
sch->scb VDY = ((quad[3]. point_Y - quad|0].point_ EY) << 16) / height;
scb->sch DDX = ((quad[2}.point” X - quad[3].point_X
- quad[1].point X + quad[0].point_X) << 20) / size;
scb->scb_DDY = ((quad[2].point_Y - quad[3].point Y
30 - quad[t].point Y + quadf0].point_Y) << 20) / size;

A wide variety of basic spryte rendering routines

35 may be built on the above primitives. These spryte
rendering routines may be written to merely create
appropriate SCoBs and 1link them into a 1list for
subsequent rendering by a routine such as DrawSprites,

or they may call the spryte engine 214 directly. Such

40 routines can include routines to draw horizontal or
vertical lines with specified endpoints, routines to

fill a specified rectangle, and routines to draw a line

from the current pen position of a graphics context to

a new position. These routines can all operate by

WO 94/10642 PCT/US92/09350

-50-

creating a SCoB which points to spryte image source data
containing a single pixel of the current graphics
context foreground color, and setting up appropriate
values in scb_X, scb_Y¥Y, scb hdx, scb_hdy, scb_vdx,
5 scb_vdy, scb_ddx and scb_ddy to have the spryte engine
214 expand the pixel to the desired shape. The routine
can then either 1link the SCoB into a list or use a
routine like DrawSprytes to call the spryte engine 214
immediately. Advantageously, routines such as these
10 utilize a GrafCon data structure to maintain "current"
foreground and background colors, and "current" X and Y
pen positions within a destination bitmap. Such a data

structure may be defined as follows:

15 /* copyright 1892 The 3DO Company */

/* Graphics Context structure */
typedef struct GrafCon

{
20 Node gc;
Color gc_FGPen;
Color gc_BGPen;
Coord gc_PenX;
Coord gc_PenY;
25 ulong g¢_Flags;
} GrafCon;

Using the GrafCon structure, the following is an
30 example of a routine that uses DrawSprytes to call the
spryte engine 214 to draw a line in a specified bitmap.

/* copyright 1892 The 3D0O Company */

35 /* A routine that draws a line to a Bitmap, using a Graphics Context */
int32
DrawTo(ltem bitmapitem, GrafCon *gc, Coord x, Coord y)

{
SCB scb;
40 int32 sprytedata[3];
Coord adx;
int32 oldx, oldy;

/* This routine doesn’t need to be in supervisor mode */

45 oldx = gc->gc_PenX;
oldy = gc->gc_PenY;

WO 94/10642 : PCT/US92/09350

-51-

ge->gc_PenX = x;
ge->gc_PenY = y;

/* Set up a data buffer to look like a literal sprite */
5 sprytedata[0] = ((1 - 1) << PREO_VCNT SHFT) | PREO_LINEAR | PREO_BPP_16;
sprytedataf1] =((1 - 1) << PRE1_TLHPCNT_SHFT)
| (0 << PRE1_WOFFSET10_SHFT);

/* Put the foreground color into the literal data */
10 sprytedata[2] = gc->gc_FGPen << 16;

/* Set up the sprite control block to refer to this type of sprite */
scb.scb Flags = SCB_ACW | SCB_ACCW | SCB_LAST | SCB_SPABS
[[SCB_ACE | $CB_BGND [SCB_NOBLK
15 | $CB_LDSIZE | SCB YOXY | SCB_LDPPMP | SCB_LDPRS;
scb.scb PPMPC = (PPMP_MODE_NORMAL < < PPMP_0_SHIFT)
[(PPMP_MODE_NORMAL << PPMP_1_SHIFT);
sch.scb_SpryteData = (SpryteData *)(&sprytedata);

20 sch.sch_DDX = 0;
sch.scb_DDY = 0;
if (y >= oldy)
{
25 sch.scb X = oldx << 16;

scb.scb_VDX = (x << 16) - sch.scb_X;
scb.scb_Y = oldy << 16;
sch.scb_VDY = (y << 16) - scb.scb_Y;

}

30 else
{
sch.scb X = x << 16;
sch.scb_VDX = (oldx << 16) - sch.scb_X;
sch.scb Y =y << 16;

35 sch.scb_VDY = (oldy << 16) - sch.scb_Y;
}

if (scb.scb_ VDX >= 0) adx = sch.scb_VDX;
else adx = -sch.scb_VDX;
40 if (adx > = sch.scb_VDY)
{
sch.scb HDX = 0;

sch.scb_HDY = (-1) << 20;
sch.scb VDY += (1 << 16);

45 if (scb.scb_VDX > = 0)
scb.scb VDX += (1 << 16);
else
{
' scb.scb VDX -= (1 << 16);
50 sch.seb X += (1 << 16);
}
else
{
55 sch.sch HDX = 1 << 20;

scb.scb_HDY = 0;
if (scb.scb_VDX > = 0) sch.scb VDX += (1 << 16);
else sch.scb VDX -= (1 << 16);
scb.schb VDY += (1 << 16);
60 }

WO 94/10642 PCT/US92/09350

~-52~
return{ DrawSprytes(bitmapltem, &scb));
}
5 The invention has been described with respect to
particular embodiments thereof, and numerous

modifications may be made without departing from its

scope.

WO 94/10642 PCT/US92/09350

-53-

CLAIMS

1. A method for rendering a graphical image into a
destination buffer, comprising the steps of:

preparing a control block in a memory; and

causing a graphics manipulation processor to render
a sub-image into said destination buffer in response to
said control block. '

2. A method according to c¢laim 1, wherein said
control block is one of a linked list of control blocks,
each carrying rendering information for a corresponding
sub-image,

and wherein said step of causing comprises the step
of causing said processor to begin sub-image rendering
steps in response to sequential ones of said control
blocks in said linked list.

3. A method according to claim 2, further
comprising the step of displaying as a single image, the
sub-images rendered into said destination buffer.

4. A method according to claim 1, wherein said
control block is arranged contiguously in said memory.

5. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, a pointer to sub-image
source data in said memory for use by said processor to
render the sub-image corresponding to said control
block.

6. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, a pointer to a data
translation table for use by said processor to translate
pixel color values in sub-image source data
corresponding to said control block.

7. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, a plurality of flag

WO 94/10642 PCT/US92/09350

-54-

bits for use by said processor to process sub-image
source data corresponding to said control block.

8. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, an indication of
starting coordinates in said display buffer at which
said processor is to begin rendering sub-image source
data corresponding to said control block.

9. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, an indication of a
number, DX and DY respectively, of horizontal and
vertical pixels in said destination buffer by which said
processor is to increment for each pixel rendered along
a first line of sub-image source data corresponding to
said control block.

10. A method according to claim 9, wherein said step’
of preparing a control block further comprises the step
of writing into said control block, an indication of a
number of horizontal and vertical pixels in said
destination buffer by which said processor is to
increment said values DX and DY, respectively, for each
line rendered of said sub-image source data
corresponding to said control block.

11. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, an indication of a
number of horizontal and vertical pixels in said
destination buffer by which said processor is to
increment starting coordinates in said destination
buffer at which said processor is to begin rendering a
second line of sub-image source data corresponding to
said control block, relative to starting coordinates in

said destination buffer at which said processor is to

WO 94/10642 PCT/US92/09350

~-55-

begin rendering a first line of sub-image source data
corresponding to said control block.

12. A method according to claim 1, wherein said step
of preparing a control block comprises the step of
writing into said control block, an indication of which
of a plurality of available data compression formats is
used in sub-image source data corresponding to said
control block.

13. A method according to claim 5, wherein said step
of preparing a control block further comprises the step
of writing to the beginning of said sub-image source
data in said memory, an indication of which of a
plurality of available data compression formats is used
in said sub-image source data in said memory.

14. A method according to «claim 1, <further
comprising the step of writing a value to a control
register (REGCTLO) indicating the number of pixels which
said processor should consider as defining a scan line
in said destination buffer.

15. A method according to claim 1, wherein said
processor combines said sub-image with an additional
image portion in rendering said sub-image into said
destination buffer,

further comprising the step of writing a value to a
control register (REGCTLO) indicating the number of
pixels which said processor should consider as defining
a scan line in said additional image portion.

16. A method according to claim 1, further
comprising the step of writing a value to a control
register (REGCTL3) indicating to said processor a base
address in said memory of said destination buffer.

17. A method according to claim 1, wherein said
processor combines said sub-image with an additional
image portion in rendering said sub-image into said

destination buffer,

WO 94/10642 PCT/US92/09350

-56-

further comprising the step of writing a value to a
control register (REGCTL2) indicating to said processor
a base address in said memory of said additional image
portion.

18. A method according to claim 1, further
comprising the step of writing a horizontal clip value
to a control register (REGCTL1), indicating to said
processor that no destination pixels horizontally beyond
said horizontal clip value need be rendered.

19. A method according to claim 1, further
comprising the step of writing a vertical clip value to
a control register (REGCTL1), indicating to said
processor that no destination pixels vertically beyond
said vertical clip value need be rendered.

20. A method for rendering a graphical image into a
display buffer, comprising the steps of:

preparing a linked 1list of control blocks in a
memory, each carrying rendering information for a
corresponding sub-image; and

causing a graphics manipulation processor to begin
sub-image rendering steps in response to sequential ones
of said control blocks.

21. A computer-readable medium, for use with a CPU,
a graphics manipulation processor and a memory,
comprising:

first computer instructions, executable on said CPU,
to prepare a control block in said memory; and

second computer instructions, executable on said
CPU, to cause said graphics manipulation processor to
render a sub-image into a destination buffer in said

memory in response to said control block.

WO 94/10642

PCT/US92/09350
1/5
B 133
— | s 130
104] / SLOW
N\ A(31:0) I A(16:2) BUS
7 PDRDB
PDWRB
PD(9:0 y
//A(:ﬂ 30) A(31 20) CO(NTRO)L /:A
.102—\ 105‘\ // // 5@2) 14 g// B/V/
A Lcontro A SLOW BUS . D ;m{
cPU 7 ADDRESS MANIPULATOR Lt CPU
/ =1D(31:16) PLAYER BUS |4 fgg D%‘I,CE
128 D(15:0) DI D0 CK> S 154
112 126~ [1387138 ppey
D D _124\/ 116 RA
—1 adde) | | PBD0 __ |PLAYER
LT | A reti A | 4 PBDI BUS
(31:16) |(15:0)| |1084 N110 114 PBLA,PBRA//
A N Casrh HO8[C oor A~ 1088 166 "2
LMEM RMEM DECOMPRESSION
COPROCESSOR
D S D S
118 o, §16 DrY, W6 A AL X YL
D(31:16) 04 s 4 A
D(15:0) 120 — 1 D(31:.16)
S(31:0) 129 ¥ L D(15:0)
CONTROLY [36\
L, T " NA CD/CDROM | [EXPANSION
29 4 140~ 16732 1 PLAYER || BUS
Ut CTL DL DR S CTL \(15:2) 145 e
. /
VIDEO AUDIO/VIDEO A-Tlo) Ty 48T 448 0
INPUT PROCESSOR exp.[[CONTROL 7,
AUDIO CTL AD 74 L 144 _1 / EXP/EN&%ON
160/ 157—, 156—, 15—, >
EXT VID IN /] 5/ / AD(24IO) / ouUT
7 AUDIO
ADIO CTL RGB IN | 452 o] INRUT
= AUDIO/VIDEO 4 DEVICE
OUTPUT CIRCUITRY
y EXT AUD IN
2 |
COMPOSITE RF SVHS AUDIO
VIDEO OUT OUT L&R OUT FIG. 1

SUBSTITUTE SHEET

WO 94/10642 PCT/US92/09350
2/5
MDT MADR
") 205\ 106
39 104 /
11 CPU L A(31:0) /[
202 INTERFACE 7
N PO g 128
204 4 Koor /208 142
29 L\ LCTL
y; fod LQSF
7 ADDRESS 110~
A 7 416~ LA
GENERATOR 7 RCTL
126~ ROSF
L 114~ RA
;\ /'210
SPRYTE ENG.{, DMA |4 e ACKS
& CONTROL ARBITER 7 N
SPRYTE ~—<— READIES
ENGINE
214
216~
/135
PLAYER BUS » PLAYER BUS 270
INTERFACE L
EXT’L PROC. | CONTROL
218~ INTERFACE
SLOW BUS _ SLOW BUS 1%
V4
INTERFACE N 130
S-PORT
224
coNtROL VT
212 ~\ SELECTS
ADDRESS J’
DECODER
) ,—[}— _ D(31:0)
7 /
'—<}— 118 120
FIG. 2

SUBSTITUTE SHEET

PCT/US92/09350

WO 94/10642

g6 914 01

YE "DIA |
ge "9I4 Ol g 914 0l /
_ \..Qmm
& oo W\ g [T (¢ eV g
d Z vis' 791907
0:1¢ a b4 L .
\TQ (Jaan 72 Yia | waav J041NOD
| SEE / L JAVME=74 g 6 [~
39vd el A4 NIQ L
AL CEE .\ 7
ere-’ ¢
y ¢, yadv dnowd wna
BEYIVE] oiE 7 0437 "NMOVH " 110
o[21907 o ¥ \“m Yo
0| INTAIN 4501 P .
™ -g9E X - 135440 Qv01
144 4
HM_M|_ m.Qmal/ .O. .O. \\ {! O
d N m O—\\ N— e
H 1041N02 i & 39VH01S 4
‘ P 4
(0:on)w| 91901 avd pl——d4 & - M\NI FELIST
N A SSINAQY [44 - 3 0EE (2:€2) LaN / 0l /n\hm.
I , vvE (1) 10N
OFF L de A cvE ddd
(44 (0:18)1aM . 2 ,
(¥2:1€)LAN‘0' 0/ 1(91:62) LGN
GVE #
| \ m (0:1€)10M SNG VLVA TYNYIINI
g02 a0z

SUBSTITUTE SHEET

PCT/US92/09350

WO 94/10642

4/5

g "DId
44
/
VE
\ [e peE 440 S
< 130 AdIY3A [y
— 140 ¢ E3
18d 4aQv [~geg 7 V4
1</3 A4 W
[- par A/ =SNG
s yd ay e, P & 44
EEYNEY Z .
o3y |21 . gre— 14
NTIaIH 1508 £ 5 < 4 .
[AA :
0c8 sie /SR EN— (0:9)
S I o |
1HOTY 6o 266 &ce /13 A2 10
A\ Y z e R 3010
(0:01)vy | P01 0¥d g ol Pz _ _ NQNW_NQ\M\Z% N
. QJP A sswav gf, L2 RTINS VE ‘914 01
T y
PIF R d =t ve “aI4 Ol
vE “9I4 0!

SUBSTITUTE SHEET

WO 94/10642 PCT/US92/09350
5/5
T (6:3) 408 410 |
| s] N\
1 404 (2:0 7 |
, AN CONTROL '7 | 7
; v DFE §7 = cE | WADDR
! HOLD Ct (?,:2)/ ¥ (1:0) 4 :
| I ,
, 406 ~ I
| (1:0) 2 42 (6:2) |
:) DFF [1o 412, L
,) |~ RADDR
= 4 7 ¥ (1:0) :
|
|
402 » l
{ / X CONTROL 2 {\
| *7 }7 | -336
DMA ,' STACK ADDRESS |
GROUP| LOGIC |
AR oo |
SOURCE
MUX OUT FIG. 4
370 45
r---—mH————F""""""""""""—""“—"—"—-——————— e ——— |
| |
702
L (RoW) |
1 y 2 11” I
| 22 |(coL) 22 77 4. (COL) |
L o11q |
|
| 1 ol 1 |
FF[
{ 706 71()/ I
M 708 14 |
, 1 Froy] - [
-~ (L)} J 11 || |
: 22 11— |
| |
' |
b 4
110
FIG. 5

SUBSTITUTE SHEET -

INTERNATIONAL SEARCH REPORT
PCT/US92/09350

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :GOG6F 15/62
US CL :395/152; 340/725
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/154, 162, 164, 165, 166, 131; 340/750, 724

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Rclévant to claim No.
Y US, A, 4,653,013 (Collins et al) 24 March 1987, See the entire| 1-21
document.
A US, A, 4,905,168 (McCarthy et al) 27 February 1990, See the| 1-21
entire document.
Y US, A, 4,951,229 (Dinicola et al) 21 August 1990, See column 4-6.} 1-21
Y US, A, 4,951,038 (Yamamura) 21 August 1990, See figure 2B and | 1-21
column 2-4.
A US, A, 4,952,051 (Lovell et al) 28 August 1990, See the entire| 1-21
document.

D Further documents are listed in the continuation of Box C. D See patent family annex.

hd Special categories of cited documents: T later d blished after the intemational filing date or priority
. . C . . date and not in conflict with the application but cited to understand the
"A” d defining the g state of the art which is not considered principle or theory t:ndc:lymg u‘xgpmvenuon
to be part of particuiar relevance
o . . : : . °X* document of particular rel ; the claimed invention t be
E carlier document published on or after the internationa filing date idered novel or be idered to involve an inventive atep
‘L document which may throw doubts on priority ciaim(s) or which is when the document is taken alone
cited to cstablish the publication date of another citation or other
special reason (as specified) "Y® document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
0 document referring to an oral disclosure, use, exhibition or other combined with one or more other such d such bil
means being obvious to a person skilled in the art
P document published prior to the intemational filing date but later than < g« . document member of the same patent family
the priority date claimed
Date of the‘actual completion of the international search Date of mailing of the international search report
24 JANUARY 1993 1 1 FEB]993
Name and mailing address of the ISA/US Aulhonzed officer ‘
Commissioner of Patents and Trademarks QI,U/ lLe
e on, D.C. 20231 qu-lEATHER HERNDON :ﬁ“'.* MGOC-HO'
.. T e TIOMAL DIVISICS
Facsimile No. NOT APPLICABLE Telephone No. (703) 305-9793

Form PCT/ISA/210 (second sheet)(July 1992)x

