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Adrian Sfarti, Nicholas Baker, Robert Laker, and Adam
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by inventors Needle et al., filed November 2, 1992, and
also to U.S. Patent Application Serial No. 07/970,289,
bearing the same title, same inventors and also filed
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PCT Patent Application Serial No. PCT/US92/09460,
entitled METHOD AND APPARATUS FOR UPDATING A CLUT
DURING HORIZONTAL BLANKING, by inventors Mical et al.,
filed November 2, 1992, and also to U.S. Patent
Application Serial No. 07/969,994, bearing the same
title, same inventors and also filed November 2, 1992;
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IMAGE DATA, by inventors Mical et al., filed November
2, 1992, and also to U.S. Patent Application Serial No.
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also filed November 2, 1992;

PCT Patent Application Serial No. PCT/US94/12521,
entitled DISPLAY LIST MANAGEMENT MECHANISM FOR REAL-
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Serial No. 08/146,505, bearing the same title, same
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MANIPULATION OF COMPRESSED FULL MOTION VIDEO, by
inventors Steve C. Wasserman et al., filed September
23, 1994.

The related patent applications are all commonly
assigned with the present application and are all
incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to a system for decoding
motion image data, and particularly to a process for
controlling decoding data hardware.

Description of the Related Art

To address the growing need for a common format of
representing compressed video on various digital
storage media, the ISO/IEC standard 11172-2 has been
adopted as one standard for compression of such image
data. The standard is more commonly referred to as the
Moving Picture Expert’s Group (MPEG) standard or "MPEG-
1". A second standard, ISO/IEC standard 13818, is a
more robust version of video decoding and is more
commonly known as MPEG-2. MPEG-1 is a subset of MPEG-
2. Both standards have several basic compression
algorithms in common, including motion compensation,
application of the discrete cosine transform (bCT),
quantization, variable length coding and run-length
encoding.

In an MPEG-1 sYstem, data is provided in a stream
that is generally made up of two layers: a system
layer contains timing and other information needed to
multiplex audio and video and user data streams and to
synchronize audio and video during playback; and a
compression layer includes the user data, compressed
audio and video streams. A system de-multiplexer
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extracts the timing information from the MPEG stream
and sends it to other system components. The system
de-multiplexer also de-multiplexes the video and audio
streams and sends each to an appropriate decoder.

A video decoder in accordance with the MPEG
standard will decompress the video stream. Each video
stream is arranged in a data hierarchy with each lower
level of the hierarchy comprising a component of a
higher level of the hierarchy. The video stream data
hierarchy comprises: the video sequence; the group of

' pictures; a picture; a slice; a macroblock; and a

block. This hierarchy is represented graphically in
Figure 1A. The video sequence is the highest level of
the wvideo bitstream. The video sequence always
consists of a sequence sender, one or more groups of
pictures, and an end of sequence code. The wvideo
sequence is another term for the video stream. The
sequence may contain any number of instances of the
"group of pictures" layer, as well as information such
as picture size, aspect ratio, frame rate, bit rate,
input buffer size, quantization tables, a "constrained
parameters" flag, information about buffer sizes, and
optional user data.

The group of pictures layer consists of one or
more pictures intended to allow random access into a
sequence. The group of pictures encompasses a series
of pictures that are to be displayed contiguously. The
group of pictures may possibly depend on reference
frames from a previous group of pictures. A so-called
"closed" group of pictures has no such pictures while
an "open" group of pictures contains references to a
previous group of pictures. A group of pictures will
begin with a header that contains a time code and
optional user data, followed by any number of pictures.

The picture is the primary coding unit of a video
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sequence. The picture generally consists of three
rectangular matrices representing luminance (Y) and two
chrominance (CbCr) wvalues. The Y matrix has an even
number of rows and columns. The Cb and Cr matrices are
one-half the size of the Y matrix in each direction
(horizontal and vertical). Thus, for every four Y
samples, there is one Cr sample and one Cb sample. The
most commonly used size for movie encoding are 352 x
240 pixels at 29.97 or 24 frames per second (NTSC) and
352 x 288 at 25 frames per second (PAL).

The picture contains decoded information for one
frame of wvideo. Each picture may be one of four
possible types. An "intra" picture or "I-picture" is
coded using only information present in the picture
itself. "I" pictures provide random access points into
the compressed video data. "I" pictures use only
quantization, run length and VLC coding and therefore
provide moderate compression. A predicted or "p-
picture" is coded with respect to the previous I- or P-
picture. This technique is called forward prediction.
Predicted pictures provide more compression and serve
as a reference for B-pictures (described below) and
future P-pictures. (I-pictures may also serve as a
reference for B-pictures.) P-pictures use motion
compensation to provide more compression than is
possible with I-pictures. "Bidirectional" or B-
pictures are pictures that use both a past and future
picture as a reference. Bidirectional pictures provide
the most compression, and do not propagate errors
because they are never used as a reference. The final
type of picture is a "DC-coded" picture or "D-picture",
which is coded using only information from itself and
intended for use in fast-forward searching.

Below the picture layer of the video bitstream is
the slice layer. The slice layer contains series of
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16-pixel x 16 line sections of luminance (Y) components
and the corresponding 8-pixel by 8 line sections of the
chrominance (CrCb) components. A macroblock thus
contains four Y-blocks, one Cb block and one Cr block,
as noted above.

Each data block is an 8x8 set of values of a
luminance or chrominance component. As discussed
below, a data block may also be comprised of motion
vectors and error terms.

In general, MPEG compression of image data

involves a translation of pixel data from the

red/green/blue (RGB) colorspace to the Y-CbCr color
space, an application of the discrete cosine transform
(DCT) to remove data redundancy, quantization of the
DCT coefficients using weighting functions optimized
for the human visual system, and encoding the quantized
AC coefficient by first using zero run-length coding,
followed by compression using entropy encoding, such as
Huffman coding.

The combination of DCT and quantization results in
many of the frequency coefficients being =zero,
especially the coefficients for high spatial
frequencies. To take maximum advantage of this, the
coefficients are organized in a zig-zag order to
produce long runs of zeroes. This is represented in
Figure 1B. The coefficients are then converted to a
series of run amplitude pairs, each pair indicating a
number of zero coefficients and the amplitude of a non-
zero coefficient.

Some blocks of pixels need to be coded more
accurately than others. For example, blocks with
smooth intensity gradients need accurate coding to
avoid visible block boundaries. The MPEG algorithm
allows the amount of quantization to be modified for
each 1éx16 block of pixels, and this mechanism can also
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be used to provide smooth adaptation to a particular
bit rate. The MPEG video bitstream includes the
capacity for carrying quantization tables, to allow for
modification of the degree of quantization.

In addition, motion compensation is a technique
used for enhancing the compression of P- and B-pictures
by eliminating temporal redundancy. Motion
compensation typically improves compression by a factor
of 2-5 compared to intra-picture coding. Motion
compensation algorithms work at the macroblock level.
When a macroblock is compressed by motion compensation,
the compressed file contains: motion vectors -- the
spatial difference between the reference picture(s) and
the macroblock being coded; and error terms -- content
differences between the reference and the macroblock
being coded. When a macroblock in a P- or B-picture
cannot be well predicted by motion compensation, it is
coded in the same way a macroblock in an I-picture is
coded, by using transform coding techniques.
Macroblocks in a B-picture can be coded using either a
previous or future reference picture as a reference so
that four codings are possible.

A timing mechanism ensures synchronization between
audio and video. In the MPEG-1 standard, a system
clock reference and a presentation time stamp are
utilized by the decoder. Additional standards are
added by the MPEG-2 standard. System clock references
and presentation time stamps in MPEG-1 are 33 bit
values, which can fepresent any clock cycle in a 24-
hour period.

A system clock reference (SCR) is a reflection of
the encoder system clock. SCRs used by an audio and a
video decoder must have approximately the same value.
SCRs are inserted into the MPEG stream at least as
often 0.7 seconds by the MPEG encoder, and are
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extracted by the system decoder and sent to the audio
and video decoders, which update their internal clocks
using the SCR value by the system decoder.

Presentation time stamps are samples of the
encoder system clock that are associated with some
video or audio presentation units. The presentation
unit is a decoded video picture or a decoded audio time
sequence. The encoder inserts presentation time stamps
into the MPEG stream at least as often as every 0.7
seconds. The PTS represents the time at which the
video picture is to be displayed or the starting
playback time for the audio sequence.

Model MPEG decoders are set forth in the ISO/IEC
1172-2 standard. In appendix D thereof, the general
decoder model includes an input buffer and a picture
decoder. The input buffer stores data at a fixed rate
and at regular intervals, set by the picture rate, the
picture decoder instantaneously removes all the bits
from the next picture from the input buffer.

In general, decoding a video sequence for forward
playback involves first decoding the sequence header
including the sequence parameters. These parameters
will include the horizontal and vertical resolutions
and aspect ratio, the bit rate, and the quantization
tables or matrices. Next the decoder will decode the
group of pictures’ header, including the "closed GQOP
and broken LINK information," and take appropriate

action. It will decode the first picture header in the
group of pictures and read the VBV_delay field. If
playback begins from a random point in the bitstream,
the decoder should discard all the bits until it finds
a sequence start code, a group of pictures start code,
or a picture start code which introduces an I-picture.
The slices and macroblocks in the picture are decoded

and written into a display buffer, and perhaps into
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another buffer. The decoded pictures may be post-
processed and displayed in the order defined by the
temporal reference at the picture rate defined in the
sequence header.

The decoding sequence of pictures may not be the
same as the display sequence. Thus, some mechanism of
ordering the display sequence, and storing decoded
image data, is required.

MPEG decoders can be implemented in a series of
hardware and software configurations. For example, in
an IBM PC-type computer, the system’s CPU, internal
data bus, and data storage unit can be programmed to
perform all buffering and decoding functions. Software
decoders capable of performing stream decoding include
Xingit! from Xing Technology Corp., Arroyo Grande,
California. Hardware processors such as the COM4100
family of multimedia processors available from C-Cube
Microsystems provide hardware/software implemented
processing of MPEG-encoded data. In addition, the C-
Cube CL550 and CL560 JPEG (Joint Photographic Expert’s
Group) processors, which perform the JPEG baseline
sequential process (a process which is essentially
incorporated into the MPEG compression algorithm),
include capabilities to allow for user-defined Huffman
tables and quantization tables to be programmed into
hardware component blocks which perform Huffman coding
and decoding and quantization on 8x8 blocks of JPEG
picture data.

In general, MPEG decoding streams consist of
around 9,900 macroblocks per second (plus audio). 1In
many multimedia applications, it would be beneficial to
provide decoding potential in excess of the 9,900
macroblock per second rate to allow interactive
applications, which will require different MPEG streams
to be decoded simultaneously (or in a "multi-threaded"
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capacity), to be implemented. For example, in
multimedia applications where different portions of the
display screen will need to be reacting to actions of
the user, and such applications are based on the video
data which is stored in an MPEG format, multi-threaded
decoding capability would be essential.

SUMMARY OF THE INVENTION

These and other objects of the invention are
provided in a process for decoding MPEG encoded image
data stored in a system memory utilizing a configurable
image decoding apparatus. The process comprises the
steps of: (a) extracting macroblock information from
said MPEG encoded image data, the macroblocks
containing image data and motion compensation data; (b)
extracting a series of parameters from the MPEG encoded
image data for decoding the MPEG encoded data; (c)
determining quantization factors from the encoded image
data; (d) configuring the configurable image decoding
apparatus, including (i) configuring a means for
parsing the macroblock data into motion vectors and
image data with the series of parameters with the
parameters for decoding the encoded data; (ii)
configuring a means for performing inverse quantization
with the quantization co-efficients; (e) determining a
decoding order of the extracted macroblock information
to be decoded; (f) providing said extracted macroblock
information to the parsing means in the decoding order;
(g) combining decoded image data with motion vectors
extracted by the parsing means; and (h) storing the
combined data in the system memory.

In a further aspect, the invention comprises an
apparatus for processing encoded image data wherein
image data is used to produce an image composed of a
matrix of pixels, the apparatus being included in a
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host system, the host system including a system memory
and a processor. The apparatus includes a first input
port for receiving a first encoded image-defining
signal, where said first encoded image defining signal
is divisible into at least' one pixel defining
component, where each pixel defining component may
comprise motion vector data or pixel value data. A
first input/output port for receiving and outputting a
handshaking signal is also included. A second
input/output port is provided for outputting motion
vector data and receiving reference data defining a
reference frame relative to the motion vector data. An
output port for outputting decoded image data is
provided. The system further includes control
instructions, operatively instructing the central
processing unit to provide encoded image information
into the first input port, operatively instructing
decoded data from the output port to be written to
system memory, instructing reference information to be
input to the second input/output port and instructing
decoded data and reference information to be directed
to an video output formatter.

In yet another aspect, the invention comprises a
process for decoding coded image data in a host
computer, the host computer including a central
processing unit (CPU) and system memory, the computer
including a decoding processor, comprising the steps
of: (a)directing the CPU to perform the steps of
parsing the system.memory into a series of buffers,
including a display buffer, a reference buffer and a
strip buffer; reading the coded image data and
ascertaining context information regarding information
in the data to be decoded; parsing the coded data into
the slice 1level information and providing the
information to the decoding processor; (b) directing
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the decoding processor to perform the steps of
distributing coded motion vector information blocks and
image data information blocks; decoding the image data
blocks into quantized coefficient blocks; performing an
inverse quantization on said  quantized coefficient
blocks to form pixel value blocks; converting the pixel
value blocks to pixel coefficients; calculating the
inverse discrete cosine transform of the pixel

coefficients to produce pixel display values; decoding

the motion vector blocks into pixel motion vectors; and
adding the pixel motion vectors and pixel display
values; and (c) directing the CPU to perform the steps
of: retrieving decoded picture data from the decoding
hardware; storing said decoded picture data in said
system memory; directing the reference buffer data to
the decoding hardware; and storing formatted decoded
picture data in a display buffer in said system memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to

the particular embodiments thereof. Other objects,
features, and advantages of the invention will become
apparent with reference to the specification and
drawings in which:

Figure 1 is a block diagram of the MPEG coding
structure and the breakdown of the distribution of
functions in the system of the present invention.

Figure 2 is a block overview diagram of the system
hardware and MPEG décoding unit hardware in accordance
with the present invention.

Figure 3 is a block diagram of the video bitstream
DMA controller shown in Figure 2.

Figure 4 is a block diagram of the parsing unit
shown in Figure 2.

Figure 5A is a block diagram of the
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interconnections of the =zig-zagging unit, inverse
discrete cosine transform unit, and motion compensation
units shown in Figure 2.

Figure 5B is a block diagram of the de-zig-zag
unit shown in Figure 5A.

Figure 6A is a block diagram of the inverse
discrete cosine transform (IDCT) unit.

Figure 6B is a flow diagram of the control logic
process utilized in the IDCT unit shown in Figure 6A.

Figure 6C is a representation of the calculations
performed by the IDCT circuit of Figure 6A.

Figure 7 is a logic diagram of the motion vector
processor of the present system.

Figure 8 is a block diagram of the macroblock
configuration utilized in accordance with the present
invention.

Figure 9 1is a table of the byte offsets for
inserting the values from the macroblocks into the
system memory.

Figure 10A is a block diagram of the data pipe for
the motion compensation unit of the present system.

Figure 10B is an exemplary luminance and
chrominance predictable macroblock.

Figure 11A is a block diagram of the video output
display functions in accordance with the system of the
present invention.

Figure 11B is a representation of the raster
conversion of chroma data to YUV444 format.

Figure 11C is a flowchart of the colorspace
conversion matrix utilized in the CSC/dither circuit.

Figure 12 is a process flow chart of a process for
decoding a single MPEG data stream in accordance with
the present invention. 7 o

Figure 13 is a block diagram of the data flow
between a host system memory and the MPEG decoding
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hardware in accordance with the present invention.
Figure 14 is a flow chart indicating a multiple
decode sequence for the method of decoding MPEG video
data in accordance with the present invention.
Figure 15 is a table showing the inputs and
outputs of each block of data during a typical video
sequence.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention provides a flexible MPEG decoding

system which is implemented in both hardware and
software. A key aspect of the hardware and software
system of the present invention is the division of
labor between decoding functions performed by the
software and decoding functions performed by the
hardware. This allows the MPEG decoding system of the
present invention to be highly flexible, and with the
proper instructions, to decode multiple MPEG streams,
in effect, simultaneously. Hence, multi-threaded
moving video, still images, and varied image sizes can
be decoded by the system of the present invention. The
hardware architecture allows all these situations to
coexist with the software controlling distribution of
image data, and sequencing of data to the hardware
decoding functions.

Figure 1 shows the breakdown of the division of
labor between the hardware and software decoding
functions of the system of the present invention. As
shown in Figure 1, a typical video sequence is broken
down into a group of pictures, comprised of an I, P,
and B-type pictures, which is comprised of sglices of
macroblocks, each macroblock containing an image block
of 8x8 pixels and, possibly, encoded motion vector
data. Line 30 represents the division of labor between
the software portion of the system and the hardware
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portion of the system. Thus, in decoding a wvideo
sequence, the software portion of the system will
search the video sequence, determine the group of
pictures ordering, and sequence the ordering of the
pictures to be decoded to the hardware portion of the
system. The hardware component of the system decodes
image and motion vector information at the slice,
macroblock, and block level in accordance with the
MPEG-1 decoding standard and the following description.

SYSTEM QVERVIEW

Figure 2 shows a general overview of the hardware
components of a decoding system in accordance with the
present invention.

The hardware architecture of the present invention
as shown in Figure 2 may reside in a host system, or be
incorporated as part of an application specific
integrated circuit (ASIC) 150 which is itself
incorporated into a host system. For example, the host
system will include a system memory 110, a central
processing unit (CPU) 102, an address and data bus 104,
and a system memory controller 106. MPEG unit hardware
control registers 112, which are accessible to the CPU
and decoding hardware, may be provided and include
system status and configuration information. The
control registers 112 are configurable by the CPU 102
for use by the decoding system of the present
invention. Such control registers are defined herein
in conjunction with their function relative to given
components. System memory 110 generally comprises
synchronous dynamic random access memory (SDRAM). As
shown in Figure 2, MPEG decoding hardware 200 may be
included on ASIC 150. The host system or ASIC 150 may
include other hardware components for performing
multimedia application specific processing such as, for
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example, digital signal processing, advanced video
processing, and interfacing with other components of
the host system. CPU 102 may comprise a PowerPC class
microprocessor manufactured by IBM Microelectronics and
Motorola. '

System memory 110 will contain MPEG-encoded video
data which must be decoded by the MPEG decoding system
in a coded data buffer. System memory 110 is
configured to include reference buffers, display (or
"output") buffers, and a strip buffer which are
accessible by decoding hardware 200 and the system CPU :
102.

As shown in Figure 2, a memory controller
interface and arbiter 160 handles all communication
between system memory 110 and the MPEG decoding
hardware 200. Memory controller interface 160 will
handle requests from a video bitstream DMA controller
170 which issues requests to read bitstream data into
a buffer contéined in the DMA controller 170; requests
from a motion compensation unit 175 to read data into
the motion compensation unit 175; requests from a video
output DMA controller to write to the video output DMA
controller 180; and read and write requests from a
video output formatter 185. Arbitration between all
the MPEG requestors is handled by memory controller
160. Memory controller 160 can handle simultaneous,
independent requests to several memory groups as
discussed herein.

Video bitstream DMA controller 170 supplies coded
data to the MPEG decoding unit 200. As explained in
further detail below, a FIFO unit in DMA controller 170
contains data waiting to be transferred to a parsing
unit 210, which is present in the MPEG decoding
hardware 200. As space becomes available in the FIFO,
video bitstream DMA controller 170 initiates memory
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requests to the memory arbiter 160 to refill the FIFO.

MPEG decompression hardware 200 performs the video
decompression algorithm on the slice layer and below,
including parsing of the video bitstream, entropy
(Huffman or, more generally, variable length decoding
(VLD)), inverse quantization, the inverse discrete
cosine transform, and motion compensation. Three
interfaces are provided to the MPEG decompression
hardware 200: the coded data interface 202, the motion
compensator interface 204, and the decoded data
interface 206. Decoded data interface 202 includes a
data provision interface 202a, and a communication
protocol interface 202b. Communication protocol
interface 202b utilizes a request/acknowledge protocol
to communicate with the video bitstream DMA controller
170. When decompressing predicted macroblocks, MPEG
core unit 200, and specifically motion vector processor
212, supplies the pixel location of the prediction data
in advance of the time the data is actually needed on
line 204. Motion compensation unit 175 may then fetch
the appropriate data from system memory 110. Decoded
data comes out of port 206 in a block order, but
without the zig-zag configuration. Five logical blocks
are shown as comprising the MPEG core decoding hardware
200: the parsing unit 210, a motion vector processor
212, an inverse quantization unit 214, a "de-zig-zag
unit" 216 and an inverse discrete cosine transform unit
218.

Motion compeﬁsation unit 175 converts pixel
addresses of reference macroblocks supplied by the MPEG
core hardware 200 to physical memory addresses in
system memory 110 and initiates memory transactions
with system memory 110 to acquire necessary data for
motion compensation via the memory controller 160. The

motion compensation unit will perform half-pixel
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interpolation, if necessary, and store the prediction
value in a local register until the corresponding pel
is available at the output 206 of core hardware 200.
At that time, the prediction data and the output of the
core hardware 200 (specifically IDCT 218) are combined
by the motion compensator unit 175. The combined data
may be stored in a strip buffer by video output DMA
controller 180. There is sufficient storage in the
motion compensation unit 175 to ensure that no memory
transaction has to be repeated during the duration of
a macroblock. '

Video output DMA controller 180 transfers
decompressed data from the motion compensation unit 175
and the MPEG core hardware 200 to system memory 110.
A buffer in the output DMA controller 180 temporarily
stores decompressed pixels on their way to system
memory 110. After the output DMA controller 180
accumulates enough data for a bus transaction, the
output DMA controller calculates an address in system
memory 110 where the data should be written and
initiates the appropriate memory transaction wvia the
memory controller interface 160. The DMA controller
passes entire frames to the output formatter 185.

Video output formatter 185 converts images from
the native MPEG format to one of several formats
utilized by the host system. As discussed in further
detail below, the output formatter contains a color
space converter, dither circuit, and quantizer.

If the luminahce/chrominance data is in a 4:4:4
format, it may also be directly passed to the output.
The color space converter transforms the MPEG data to
the RGB (red/green/blue) domain for use in three-
dimensional rendering. The quantizer optionally
converts 24 bit pixels to 16 bit pixels.
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As noted above, control registers 112 have a

default configuration and may be configured by software
instructions to CPU 102. Specific registers configured
for functions of individual "hardware ‘elements are
described in the following sections pertaining to such
elements. Registers 112 are configured for system
configurations and system interrupts as follows:

Table 1 -
MPEGUnit Configuration Register Bit Descriptions

Name Bit(s) Type Description
{reserved) 0:18 X reserved
vofRdEnable 18 RW output formatter read enable
vofWrEnable 20 RW output formatter write enable
vofReset_n 21 Rw output formatter reset
vodEnable 22 RW Video Output DMA Enable
vodReset_n 23 RW Video Output DMA Reset
motEnable 24 RW Motion Estimator Enable
motReset_n 25 RW Motion Estimator Reset
mvdReset_n 26 RW Decompressor Reset
parserStep 27 RW Parser Step Control
parserEnable 28 RW Parser Enable
parserReset_n 29 RwW Parser Reset
vbdEnable 30 RW Video Bitstream DMA Enable
vbdReset n 31 - RW Video Bitstream DMAReset
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Table 2 - Interrupt Enable
Name Bit(s) Type Description
(reserved) 0:24 X reserved
5 Strip Buffer Error 25 RW error in output dma with strip
buffer enabled
Everything Done 26 RW output formatter, parser done
Output Formatter 27 RW formatting complete
Output DMA 28 RW DMA complete
Bitstream Error 29 RW parser bitstream error
10 End Of Picture 30 RW from parser
Video Bitstream 31 RW buffer exhausted
DMA
15 Table 3 - Interrupt Status
Name Bit(s) Type Description
(reserved) 0:24 X reserved
Strip Buffer Error 25 RW error in output dma with strip
buffer enabled
20 Everything Done 26 Rw output formatter, parser done
Output Formatter 27 R formatting complete
Output DMA 28 R DMA complete
Bitstream Error 29 R parser bitstream error
End Of Picture 30 R from parser
25 Video Bitstream 31 R buffer exhausted
DMA
Video BitStream DMA Controller
30 Figure 3 is a hardware block diagram of the video

As shown in Figure 3,

bitstream DMA controller block 170 shown in Figure 2.
the bitstream DMA controller 170

includes a 16 x 32 RAM 220, a multiplexer 222, a FIFO
controller 224, and an address generator 226.
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Video bitstream DMA controller 170 reads coded
data from system memory 110 and places it into FIFO
register 220. Generally, the parser unit 210 takes the
data from the FIFO at a highly variable rate depending
on the characteristics of the coded video bitstream.

Coded data buffers (see Figure 13) in system
memory 110 may begin on any byte boundary and may be
any number of bytes long. DMA controller 170 has its
own queue of two address and length registers that tell
it where in system memory 110 the coded data resides.
Each time video bitstream DMA controller 170 exhausts
a coded data buffer in main memory 110, it returns an
interrupt to the CPU and begins reading coded data from
the next valid address in the DMA controller queue of
addresses. The queue of two buffer addresses 1is
provided in a Current Address Register (Table 4) and a
Next Address Register (Table 6) in DMA controller 170
and reduces the urgency of the end of buffer interrupt
of DMA controller 170. Each buffer address consists of
a (byte-aligned) memory address (Tables 4, 6) and a
length in bytes (Tables 5, 7). To place a buffer
address in the queue, the CPU must first write a 23-bit
physical memory address to the Next Address Register
(Table 6) and then a 16-bit length to the Next Length
Register (Table 7) in the DMA controller 170. When a
data buffer is exhausted, the DMA controller 170
optionally generates an interrupt, and moves on to the
next buffer spécified in the Next Address Register.
After an end-of-piéture interrupt is generated by the
parsing unit 210, registers in the DMA controller 170
may be examined to determine where the first start code
following the end-of-picture occurred.

The hardware registers for implementing the
aforementioned description are as follows:
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Table 4 - Bitstream Unit DMA Current Address Register

Name Bit(s) Type Description
{reserved}) 0:6 X reserved
5 Current Address 7:31 R | next read address

Table 5 - Video Bitstream DMA Current Length

10 v Name Bit(s) Type Description
(reserved) 0:14 X reserved
Current Length 15:31 R bytes remaining in current
buffer
15
Table 6 - Video Bitstream DMA Next Address
Name Bit(s) Type Description
(reserved) 0:6 X reserved
20 Next Address 7:31 RW next buffer address

Table 7 - Video Bitstream DIMA Next Length

25
Name Bit(s) Type Description
(reserved) 0:14 X reserved
Next Length 15:31 RwW next buffer length
30 .
Table 8 - Video Bitstream DMA Config/Status
Name Bit(s) Type Description
(reserved) 0:14 X reserved
35 vbd snoop enable 15 RwW enable snooping on vbd reads
{reserved) 16:26 X ‘reserved
Buffer Byte Count 27:31 R number of bytes buffered
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FIFO controller 224 monitors the fullness of the
16x32 RAM 220 containing coded data on its way to
parsing unit 220. Each time the data request from the
parser unit 210 becomes valid, FIFO controller 224
moves on to the next 16 bits to be transferred. The
memory address queue is provided in address generator
226 and is incremented every four bytes. When RAM 220
becomes half empty or more, FIFO controller 224 makes
a request to the address generator 226. Address
generator 226 initiates a memory transfer via memory
controller 160. When the data becomes available, the
address generator inserts a write signal to FIFO
controller 224.

A soft reset and enable for bitstream DMA
controller 170 are provided in the MPEG unit
configuration register. A zero in the vbdReset bit
location disables operation of the DMA controller 170;
for normal operation, a "1" is written to this bit. If
during normal operation, the bit transfers from a "1"
to a zero, the DMA address queue is flushed and the
remaining contents of the bitstream FIFO are immediate-
ly invalidated. Setting this bit to "0" is equivalent
to a soft reset of the DMA controller 170. The
vbdEnable bit is a bitstream enable bit, which, when
disabled, pauses DMA controller 170.

The DMA controller next address queue includes a
bitstream unit address queue control bit (Next Address)
which, when written to, places a new value in the next
location of the address gqueue. Note that the address
does not become a valid entry in the queue until the
corresponding write to the length register (Next

v Length) occurs. The address is 25 bits long and the 25

bits uniquely specify a byte location in system memory
110. Any byte alignment is allowed. Registers imple-
menting the address queue may be individually read via
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a direct memory mapping for diagnostic purposes.

The bitstream unit current length queue (Video
Bitstream DMA Current Length) corresponds to the
address queue (Video Bitstream DMA Current Address).
Each entry in the length specifies the number of bytes
to be read from the segment of the bitstream beginning
at the address contained in the corresponding entry of
the address queue. Entries in the length queue are 16
bits long, allowing each buffer segment to be up to 64
Kbytes. Writing the length queue actually causes a new
entry to be placed in the queue; a write to the address
queue does not cause an update. Therefore, the address
should be written before the length when adding a new
segment to the length queue. If there are no wvalid
addresses in the address queue, the address/length
immediately becomes the current address for the DMA
controller 170. If there is one valid address, the
address length becomes the current value only after the
buffer presently being read is exhausted.

The Bitstream Unit DMA current status register of
the DMA controller allows the CPU to determine where in
memory the DMA controller unit is currently reading
from. This is particularly useful at the end of a
picture in the case of a bitstream error.

MPEG CORE HARDWARE

The MPEG core hardware 200 is defined as the
parsing unit 210, inverse quantization unit 214, motion
vector processor 212, de-zig-zag unit 216, and inverse
discrete cosine transform unit 218.

In general, parsing unit 210 turns the MPEG
bitstream (slice layer and below) into a series of
motion vectors and run/level pairs that are passed on
to the motion vector processor 212 and inverse
quantization unit, respectively. The inverse



WO 96/36178 PCT/US96/06510

10

15

20

25

30

- 25 -

quantization unit decodes the run/level pairs (using Q-
tables decoded from the bitstream by the system CPU
102), reconstructs the frequency domain discrete cosine
transform samples as per the MPEG-1 specification, and
passes them to the de-zig-zag unit 216. The de-zig-zag
unit contains memory to "de-zig-zag" the data recovered
from the MPEG stream. The inverse. discrete cosine
transform unit transforms the frequency domain data
into the spatial domain. Motion vectors from the
parser unit 210 are transferred to the motion vector
processor 212. Motion compensation unit 175 combines
the prediction generated by the motion vector processor
with the output from the inverse discrete cosine
transform unit 218 and passes the results on to the
video output DMA controller 180.

Parsing Unit
Figure 4 shows a block diagram of the parsing unit

210 utilized in the MPEG core decompression hardware
200. Parser unit 210 includes a bit shifter 230,
parser state machine 232 and registers 234. The
parsing unit 210 must be programmed with the variables
picture Coding_Type, forward R Size and backward R Size
as decoded from the bitstream by the CPU under the in-
structions provided in the system of the present
invention. It should be recognized that these
variables need not be present in a bitstream format,
but can be decoded from coded data in a different data
structure more suitably used for interactive formats.
The following values reside in the parser configuration
register set forth below:
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Table 9 - Parser Configuration
Name Bit(s}) Type Description
(reserved) 0:2 X reserved
5 full_pel_backward_ | 3 RwW from picture header
vector
(reserved) 4 X reserved
backward_r_size 5:7 RW from picture header
(reserved) 8:10 X reserved
10 full_pel _forward_ 11 RW from picture header
vector
{reserved) 12 X reserved
forward_r_size 13:15 RW from picture header
{reserved) 16 X reserved
15 priorityMode 17:19 RW priority request control
(reserved) 20:28 X reserved
picture_coding_type | 29:31 RW from picture header
20 The parser configuration register contains the
reset and enable bits for the parser. The parser
configuration register contains parameters that must be
decoded from the picture layer of the bitstream. This
register is only written while the parser is in reset
25 mode.

The image size register, produced below, allows
the parser to determine the relative addresses of the
prediction of a predictive ‘coded (p-picture)
macroblock. It should only be modified while the

30 parser is in reset. MPEG Specification 11172-2 speci-

35

fies the proper decoding of the variables mp_height and
mp_width.
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Table 10 - Image Size

Name Bit(s) Type Description
(reserved) 0:15 X reserved
5 mb_height 16:23 RW '| image width in macroblocks
mb_width 24:31 RW image height in macroblocks

The parser status register contains information
10 for the CPU from parser 210. It is utilized for
debugging and retrieving details about bitstream errors

by the CPU from parser 210.

15 Table 11 - Parser Status O
‘Name Bit(s) Type Description
{reserved) 0 X reserved
mb_row 1:7 R current macroblock row
20 {reserved) 8 X reserved
bitstreamError 9 R 1 =bitstream error detected
error state 10:15 R state where error occurred
eval bits 15:31 R current bit shifter output
25
Table 12 - Parser Status 1
Name Bit(s) Type Description
{reserved) 0:2 X reserved
30 blockNumber 3:5 - R current block number
macroblock_type 6:10 R as in MPEG spec
numBits Valid 11:156 R # of valid eval bits, from left
lastStartCode 16:23 R last start code parsed
{reserved) 24 X reserved
35 mb_column 25:31 R current macroblock column
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Parser state machine 232 includes control logic
236 and a state register 238. Bit shifter 230 also
includes a register 231. The bit shifter 230 shifts
bitstream data up to 12 bit increments as defined by
the control logic 236. As shown in Table 13, the
control 1logic determines the amount of the shift
necessary dependent upon the data being examined. The
parser handles elements in the bitstream as data units,
such as the quantizer information, macroblock stuffing,
address increment, etc. Table 14 outlines the time
necessary for each element to be handled by the parser.
The amount of the bit shift allowed bit shifter 230 is
directly dependent upon the data unit being handled.
When information from the bitstream DMA unit is
provided to the parser, the control logic will search
the data for a start code in 12 bit increment shifts,
12 bits/clock cycle.

Control logic 236 determines the amount of the bit
shift depending on the nature of the incoming data.
The shift value is written to the bit shift register
231, For example, a start code in a video sequence
comprises 23 consecutive zeros. The bit shifter will
require 2 cycles, at 12 bits per cycle, to determine a
start code. Table 13 outlines the number of cycles
(and the MPEG 1 specification the size and type of
data) which the parser requires to examine incoming
data. The parser configuration registers 234 contain
information derived from the stream header and allow
the parser to determine the nature of the incoming
data. Once the data type is determined, data can be
shifted to the control logic which divides out the RLL
and motion vector data to the IQ unit and the motion
vector processor. The state register 238 in the parser
state machine 232 can track the data type expected by
the control logic by reading the bit shift register
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231.

The following table details the number of cycles
of the system timing clock expended by parser unit 210
in decoding various parts of the bitstream:

5
Table 13 - Parser Performance
Decoding Process Performance
i0 Look for slice header 12 bits/cycle
Quantizer Scale 1 tick
Slice Extra Information 1 cycle if none present, 1 cycle per code other-
wise
Macroblock Stuffing 1 cycle if none present, 1 cycle per code other-
wise
Macrobldck Address Incre- 1 cycle for codes less than 4 bits, 2 cycles for
15 ment longer codes, plus 1 cycle for each escape
Macroblock Type 1 cycle
Motion Vectors 1 cycle for each vector not present; otherwise,
1 cycle for the motion code if iess than 4 bits, 2
cycles otherwise; plus 1 cycle if R present --
times 2 to account for both H and V
Macroblock Pattern 1 cycle, whether present or not; 2 cycles for
codes longer than 4 bits
Block There is a 1 cycle overhead at the beginning of
each block while the parser decides what to do
next
20 DC Term in I-coded 3 cycles
Macroblocks
Each R/L Code (including 1 cycle if code less than 4 bits, 2 cycles other-
first in non-I-coded Macro- wise
blocks}
25 Each R/L Escape 2 cycles
End of Macroblock 1 cycle
30 Parser unit 212 directly detects certain error

conditions. When the parser encounters an error, it
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generates an interrupt and freezes in its current
state. The CPU can then examine the current state bits
in the parser status register, and determine the type
of error that caused the interrupt. The following
table enumerates all of the detected error conditions
and the state in which they are detected:

Table 14 - Parser State Table

Symbolic State Name State Description of Error
Number
{decimal)
HANDLE _START_CODE 9 Invalid slice start code
{>mb_height)
QUANTIZER SCALE 10 Quantizer_scale set to zero
MACROBLOCK_ADDRESS_ 13 invalid VLC for macroblock address
INCREMENT increment
MACROBLOCK_ADDRESS 14 invalid macroblock_address_

increment after a slice start code
(>mb_width) -- or -- decoded
macroblock_address_increment
causes decoding to go beyond the
end of the picture (as defined by
mb_height and mb_width)

MACROBLOCK_TYPE 15 Invalid macroblock type VLC

QUANTIZER_SCALE MB 16 Quantizer_scale set to zero

MOTION_CODE 18 Invalid motion VLC

MACROBLOCK_PATTERN 20 Invalid coded_block_pattern VLC

DCT_DC_SIZE_ 22 Invalid VLC for

LUMINANCE dct_dc_size luminance

DCT_DC_SIZE_ 123 invalid VLC for

CHROMINANCE dct_dc_size_chrominance

DO_RUN 27 More than 64 samples decoded for
one block

DECODE RLP_STAGE!1 32 Invalid run/level VLC -- or -- more

than 64 samples decoded for one

block
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DECODE_RLP_STAGE2 33 Invalid run/ievel VLC -- or -- more
than 64 samples decoded for one
block
DECODE_RLP_ESCAPE_ 35 More than 64 samples decoded for
LEVEL ‘ one block
DECODE_RLP_ESCAPE_ 36 More than 64 samples decoded for
LONG one block
END_OF_SLICE. 30 More than 12 consecutive zeros
found that are not followed by a
valid start code

In a worst-case macroblock decode, the total
number of cycles required would be 790 cycles. A
worst-case macroblock would consist of an address
increment code with more than 4 bits, an M-quant, 2
motion vectors of the long variety, a long pattern
code, an all-escape or long R/L pair codes. Macroblock
stuffing and address escapes will add one cycle per
instance to the worst case number. The inverse dis-
crete transform unit 218 can transform an entire
macroblock in 1056 cycles, giving the parser approxi-
mately a 50% higher performance than the inverse
discrete cosine transform unit. If macroblock stuffing
is present, the parser’s performance degrades; however,
more than 300 stuffing codes would have to be inserted
to lower the parser’s performance to the level of the
inverse discrete cosine transform unit.

Inverse Quantization Unit

The inverse quantization unit 214 decodes the
run/length pairs and performs an inverse quantization
on the incoming image blocks in accordance with the
process outlined in the MPEG-1 specification. The
inverse quantization unit 214 contains a 128 bit long

word space for reading and writing quantization tables
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in the IQ unit 214. As noted above, the quantization
tables are decoded by the CPU 102 and provided to IQ
unit 214. These tables should only be accessed while
the IQ unit 214 is in re-set.

De-Zig-Zag Unit
Figure 5A shows the connections between the IDCT
and the DZZ and motion compensation unit.

DZZ 216 includes a DZZ address generator, 64 x 12

RAM and flow control logic 256. Data from the IQ unit

is written to RAM 254. Address generator 252 selects
the data address for a data read so that data out of
RAM 254 is in an inverse zig-zag format.

The IDCT/DZZ handshaking interface consists of the
production of eight signals from the DZZ flow control
256 that indicate the availability of wvalid data
(DZZ_Validlines). Each signal corresponds to one of
eight vertical columns that comprise an 8x8 block of
samples. After reading the data from a particular
column of samples in RAM 254, IDCT 218 inserts the
corresponding signal in the IDCT invalidateDZZlines bus
to inform DZZ 216 that the data has been read. DZZ 216
responds by lowering DZZ valid lines until the column
contains new data.

The DZZ data interface provides a 6 bit read
address from the IDCT 218 to the DZZ 216. The most
significant 3 bits select the vertical column and the
least significaht bits select an individual sample
within the column. The DZZ 216 latches the address
from the IDCT 218 and provides the selected data before
the end of the next clock cycle. IDCT 218 also
provides an enable signal to allow power conservation
of the random access memory within the DZZ.
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Inverse Discrete Cosine Transform Unit

As noted above, inverse discrete cosine transform
(IDCT) unit 218 transforms 8x8 blocks of frequency-
domain input samples into 8x8 blocks of spatial domain
pixels or differential pixels as specified in the MPEG-
1 standard.

- The IDCT 218 receives reconstructed frequency
domain samples from DZZ 216, performs an inverse DCT to
return the data to the spatial domain, and transfers
the results to the motion compensator 175. Both
interfaces to the IDCT 218 include handshaking. If
data from DZZ 216 is unavailable, or the motion compen-'
sator 175 is not able to accept additional input, IDCT
218 will stall.

The IDCT and motion compensator handshaking
interface includes a ready signal (MOT spaceavailable)
from the motion compensator 175 to the IDCT 218. Eight
output values can be sent on the output data interface
of IDCT 218. IDCT 218 responds to the request by the
motion compensator 175 by asserting the IDCT motAck to
acknowledge that eight samples (comprising a horizontal
row of pixels) will be available shortly. IDCT 218
asserts IDCT dataOutValid when the samples actually
appear at the output.

The IDCT data interface consists of a 9-bit, two's
complement data bus (IDCT_dataOut) and a single bit
data valid qualifier (IDCT_dataOUTVALID). The qualifi-
er signal will be asserted for eight comsecutive cycles
following each assertion of IDCT_motAck. Each group
consists of eight samples comprising a horizontal row
of pixels (or differential pixel) outputs. The first
group of eight corresponds to the uppermost row, and
the outputs proceed downward to the bottom (8th) row of
the macroblock. Within each row, the outputs occur in
the following order, with zero as the leftmost output,
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7 as the rightmost output: ©0, 7, 3, 4, 1, 6, 2, 5. If
mot_spaceAvailable remains asserted, and the IDCT 218
input data is not started, the IDCT would produce one
group of eight results every ten cycles.

Figure 6A is a block diagram of the inverse dis-
crete cosine transform unit. The inverse discrete
cosine transform unit takes advantage of the separabil-
ity of the discrete cosine transform unit by doing
sixteen one-dimensional length eight inverse discrete
transforms in order to calculate a single two—dimen-

sional 8x8 inverse discrete cosine transform. Each

one-dimensional inverse discrete cosine transform
requires ten cycles to execute. A single two-dimen-
sional inverse discrete cosine transform can be
completed in 176 cycles per block or 1056 cycles per
macroblock. The overall performance of the IDCT unit
is thus 62,500 macroblocks per second at 66 Mhz. CCIR
601 video consists of 40,500 macroblocks per second,
yielding more than 50% overhead above the CCIR 601

video rate. This allows for multiple threads of
compressed data to essentially be decoded
simultaneously.

As shown in Figure 6A, the IDCT comprises control
logic 300, a 64x18 CRAM 302, multiplexers 306-320,
registers 322-334, multipliers 336-348, result
registers 350-364, sine magnitude to two’s-complement
converters 365-372, adders 375-382, partial sum
registers 384, 386, adder/subtracter 388, final result
register 389, two's complement to sine-magnitude
converter 390, rounding logic 392, rounded result
register 394, clipper logic 396, sine-magnitude to two's
complement converter 398, and IDCT dataout register
399.

The DZZ_DataOut is provided to multiplexer 304 and
is distributed to seven multipliers 336-348 and
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multiplexers 308-320. Only seven multipliers are
required as one multiplier MO is used twice (since its
the result of which is equivalent to the result of M4).
Figure 6C shows the multiplication ordering performed
by the control logic for each of the eight iterations
(0 - 7). Thus, the result of multiplier 336 is used
in register 350 and register 352.

The separability of the DCT transform allows the
performance of 16 one dimensional length IDCTs in order
to obtain the single, two-dimensional 8x8 IDCT. The
IDCT may not be halted in the middle of the computation
of any one dimensional transform. It only stops after
the transform has been completed, and either the motion
compensation unit 175 is unable to accept new data or
the DZZ cannot provide new input data. The IDCT will
produce eight results each time it goes through the
main sequence of states. These results will either be
placed into CRAM 302 for vertical iterations, or loaded
into the motion compensator 175 for horizontal
iterations.

The IDCT control logic 300 loads the proper inputs
from the DZZ or CRAM 302 and operates multiplexers 308-
320 to control signals in the data path to produce the
desired result. Normally, the IDCT control logic 300
cycles through a sequence of 11 states, however, three
conditions cause the sequence to vary: assertion of
reset, lack of valid data in the DZZ, and lack of Space
available in the motion compensation unit.

Figure 6B shows the possible states and
transitions of the IDCT control logic state machine.
The usual sequence of 11 states is shown in the center
of the diagram, the reset/no data in the DZZ condition
on the left and the motion compensator full state on
the right.

The control logic performs eight horizontal and
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eight wvertical iterations per two-dimensional IDCT.
The iteration number is maintained in a separate
register. The MSB of the iteration register determines
whether a horizontal or vertical iteration is taking
place. This is, in turn, used to create the read
enable for the DZZ, write enable for the CRAM, and to
make decisions the next state transition as outlined in
Figure 6B. '

The reset state of the control logic sets-up the
first four multiplications necessary for calculation of
the IDCT (LOAD_FO, LOAD_F4, LOAD_F2 and LOAD F6). The
normal 11 stages for the IDCT are LOAD_F1, LOAD_F3,
LOAD_F5 AND LOAD_F7 to set up the multiplexers to
calculate the multiplication ordering shown in Figure
6C, then computation and storing stages COMPUTE_RO_R7,
RESULT RO_R7, COMPUTE_R3 R4, RESULT_R3_R4,
COMPUTE_R1_R6, RESULT R1_R6, and COMPUTE R2 R5. At
this stage, depending on whether a horizontal or
vertical iteration is being performed and whether space
is available in the motion compensation unit, the
control logic will either loop to the LOAD F1 stage or
store the COMPUTE_R2_RS5 result in RESULT R2 R5. If a
vertical iteration is being performed and no preloading
(DZ2Z_validLines-valid) is occurring, or a horizontal
iteration is occurring and space is available in the
motion compensation wunit (mot_spaceAvailable), the
LOAD_F1 sequence will be executed. If a vertical
iteration is being performed and a preload is
occurring, or if a horizontal iteration is being
performed and no space is available in the motion
compensation unit, the result of the COMPUTE_R2_R5 will
be stored and the logic will wait at the WAIT READY
step until DZZ_validLines is valid during a vertical
iteration, where the LOAD_FO step will be executed, or
the motion compensation unit has space available during
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The IDCT produces results during eight consecutive
cycles out of 11 during normal operation. These eight
cycles are qualified by the signal IDCT dataOutValid.

Motion Vector Processor
Figure 7 is a block logic diagram of motion vector
processor. The motion vector processor described with

- respect to Figure 7 implements the decoding of forward

and backward motion vectors in accordance with the
MPEG-1 specification.

Motion vector processor reconstructs the value of
the motion vectors in p-type and b-type macroblock
pictures. The macroblocks motion vectors are decoded
in accordance with the standards set forth in the MPEG
1l standard. In p-type macroblocks, first the value of
the forward motion vector for the macroblock is recon-
structed and a prediction macroblock is formed. Then,
the DCT coefficient information, stored for some or all
of the Dblocks is decoded, dequantized, inverse DCT
transformed and added, in motion compensation unit 180,
to the prediction macroblock.

In B-type macroblocks, according to the invention,
first, the value of the forward motion vector for the
macroblock is reconstructed from the retrieved forward
motion vector information, and the backward motion
vector for the macroblock is reconstructed from the
retrieved backward motion vector information. The
forward prediction and the backward prediction are then
computed. Finally, the computed prediction is added to
the differential pixels from the IDCT.

In motion vector processor 212, horizontal and
vertical motion vector data is input from the parser to
a bit shifter 402. Shifter 402 is coupled to a
forward/backward_r_size register (the
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forward/backward_r_size values being computed from the
picture header information in accordance with the MPEG-
1 standard) and the shift of bit register 402 is
determined based on the input data. The data is then
shifted to an intermediate result holding register 404.

An overflow mask 410 is also generated' and
comprises the r size shifted a quantity FFF (hex) to
allow for checking of overflows in the picture boundary
and allow the reference to "wrap" around picture

| boundaries. In accordance with the MPEG-1 defined

process for reconstructing motion vectors, the
reconstruction method implemented by motion vector
processor begins by generating a complement to the
horizontal or vertical, forward or backward r_values.
A sign change control input is provided to an
exclusive-OR gate which has, as its other input, the
data from register 404. The sign change is implemented
dependent upon the values of the
forward/backward _r size, again in accordance with the
MPEG-1 specification. The output of XOR gate 406 is
provided to an adder 408, which sums the output of XOR
gate 406 with the previously retrieved values for the
motion horizontal_forward r, motion vertical_ forward r,
motion_horizontal_backward r, and
motion_vertical_backward r stored in registers 412-418
depending upon whether a horizontal or vertical motion
vector is being processed.

The output of adder 408 is provided to OR gates
420,422 and AND gatés 424, 426 along with mask 410 and
the output of registers 412-418, and the output of a
selector 428, which adds four to the wvalue of the
output from adder 408. The gate array performs
computation of the current motion vector being decoded
based on the values in registers 412- 418 and the input
data. A multiplexer determines the proper result of
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the gate array output being decoded, i.e., the positive
values for the reconstructed horizontal or wvertical
motion vectors (recon_right, and recon_down,
respectively). »

The output of MUX 430 is provided to a bit shifter
432 and second MUX 434. The final portion of the
motion vector reconstruction involves computing the
whole and half-pel unit values from the reconstructed
values. The reconstructed values the half-pel values
are selected by MUX 434 and stored in register 440.
Adder 444 sums the reconstructed value with a
horizontal overhead selection value. |

Motion Compensation Unit
Each macroblock is stored in memory as 384 contin-

uous bytes. Organization within each macroblock is
shown in Figure 8. Each luminance block is divided
into two halves, T for top and B for bottom. The
chrominance blocks are divided into quarters numbered
0-3 from top to bottom. The offset of the first byte
of each of these elements in the macroblock is given by

the table in Figure 9. The sort address for any
macroblock is given by base + [(H) (16)H, +(V%16)] x
384. This allows for easy calculation in hardware

(since 384 is 3x128).

The motion unit soft reset and enable bits
(motReset and motEnable) are present in the MPEG unit
configuration register. The address for the reference
buffers (Reference 0 and Reference 1) (shown in Figure
10) in system memory 110 must begin on a 4 KB boundary,
giving 13 bits address for each buffer. The prediction
address should be set to zero if the buffer is not
present.

Figure 10A shows the data pipe for the motion
compensation unit utilized in the system of the present



WO 96/36178 PCT/US96/06510

10

15

20

. 25

30

35

- 40 -

invention. The pipe consists of a series of registers
MUXs and adders which accept 32 byte data segments of
prediction data in the order defined in an exemplary
macroblock shown in Figure 10B. The addresses of the
prediction buffers are held in registers as shown in
the following tables:

Table 15 - Forward Prediction Buffer Address

Name Bit(s) Type Description
(reserved) 0:6 X reserved
forward prediction 7:19 RW 4K aligned address

buffer address

(reserved) 20:31 X reserved

Table 16 - Reverse Prediction Buffer Address

Name Bit(s) Type Description
{reserved) 0:6 X reserved )
reverse prediction .7:19 RW 4K aligned address

buffer address

{reserved) 20:31 X reserved

Each scan is performed first for the forward
prediction data, then for the backward prediction data.
The pipe first performs horizontal compensation in
stages 500(0) through 500(8), then vertical
compensation in steps 500(8a) through 500(9) as
described further below. In Figure 10B, four blocks
comprising a single macroblock are shown for the
luminance values. The following description will be
limited to the luminance wvalues, though it should be
readily understood that the pipeline processing is

- similar for the chrominance blocks also shown in Figure
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10B.
In Figure 10B, a worst case block prediction is
shown at 460. In this instance, the block is not

horizontally or vertically aligned with any block
segment, and thus, to retrieve the eight 32 byte
segments making up a single block, fifteen 32 byte
segments (numbered 1-15) must be read, since data will
be needed from each of these segments to interpolate
the values for the selected block 460. Each segment
contains four rows of eight pixels each. These rows
are inserted into the pipeline as pixel words in the
following order:

column 0 1
row 0O 0 1
row 1 2 3
row 2 4 5
row 3 6 7

With reference to Figure 10A, data enters the pipe
in a series 32 bit registers 500(0-7) and is advanced
register to register each clock tick. In a simple
case, data is transferred sequentially through the
registers to adders 502-508 which perform interpolation
(if necessary) by averaging pixel data in adjacent 8-
bit segments in register 500(7). However, as will be
noted, adder 508 is coupled to multiplexer 510 which
has inputs from registers 500(0) and 500(6). For
proper interpolatioﬁ, the "right-most" byte of the even
numbered words gets averaged with the "left-most" byte
of the odd numbered words. The right-most of the odd
words must get averaged with the left-most of the
corresponding even word in the adjacent chunk. For two

adjacent words:
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A0 Al BO Bl
A2 A3 B2 B3
A4 A5 B4 BS5
A6 A7 B6 B7

which enter the pipe in the order: A0, Al, A2, A3, A4,
A5, A6, A7, BO, Bl, B2, B3, B4, B5, B6, B7, the even
numbered words will find their right neighbor seven
positions behind them in the pipe, while odd numbered
words find their right neighbor 1 positioﬁ behind.
Thus, registers 500(0) and 500(6) provide selectable
outputs to MUX 510 which allow the control logic for
the motion compensator to average byte neighbors within
a word, and the right-most byte of each word with the
left-most byte of either the 1-tick or 7-tick delayed
word. MUXs 511-514 allow for interpolation adders 502-
508 to be bypassed when interpolation is not required
(i.e., when the target block 460 is horizontally
aligned within the luminance macroblock).

A 36 bit wide register 500(8) stores the
interpolated (or non-interpolated) horizontal data in
four 9-bit banks. Truncation is performed on the
horizontally interpolated data during vertical
interpolation and the end pixels are eventually thrown
out.

Vertical interpolation is performed in a similar
manner using adders 522-528 and multiplexers 525-528.

A 16 x 36 RAM 515 is provided to store the bottom
row of each 32 byté segment and return it to the pipe
at the proper instance. In vertical interpolation,
each pel’s neighbor directly above it can be found two
clock ticks behind it in the data pipe. Thus registers
500(8a) and 500(8b) are provided to delay the data by
two clock ticks before vertical averaging. In a
luminance block, this means writing segments 6 and 7
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into RAM 515, and reading them back into the pipeline
via a MUX 517 into register 500 (8a) before the top row
of the next data segment reaches the vertical
interpolation step.

Register 500(9) stores the ‘interpolation result in
a 32 bit register. The data is still aligned in the
same format it had in system memory, although
interpolated. A MUX 450 utilizes the lower few bits of
thé prediction address to move bytes horizontally and
drop words vertically to shave off all but the
prediction data. The horizontal swizzling requires
that up to three bytes per row of each chunk be saved
and joined with data from the next data segment. Thus
a 24 bit wide 4byte x 3 byte array of flip-flops 552
stores this information for rejoinder by MUXs 554-556.

The pipe outputs accurate predictions for either
forward, reverse, or both motion vectors. As noted
above, the forward and reverse data alternates with
each row of data segments (4 pel rows) that come from
memory, At the input to the pipe, control instructions
ensure that data is provided from the motion wvector
processor in the right order such that the if both the
forward and reverse motion vectors are being predicted,
the forward data never gets more than three pixel rows
ahead of reverse and vice-versa. Tracking is performed
to follow which prediction is ahead, and if data is
received for the prediction that is ahead, it is stored
in a second 16 x 32 RAM 560. If data is received for
the trailing prediétion, it can be interpolated with
the data stored previously by adders 560-568 and MUXs
571-574.

After both forward and reverse interpolation, a
fully = reconstructed prediction is ready for
reconstruction.

Register 500(B) holds the forward or reverse
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Chrominance data is placed into the pipe in a
manner similar to luminance, except that the pipe must
account for the interleaved structure. Horizontal
half-pel interpolation is the same, except the vertical
interpolation requires saving and restoring the last
row of a block twice as often. The realignment requires
setting the chroma prediction as only 8x8 (x2) and

forward/reverse interpolation treats the component type

as an additional row bit.

Output DMA Unit
Addresses for the video output DMA unit 180 are

the same as those in the prediction base address
register (Tables 15 and 16). The output DMA unit has
two modes: a reference frame format and a strip buffer
format. In reference frame format, all the output is
written contiguously into reference frame format. A
strip buffer (Figure 13) is used in system memory when
passing data to save memory when passing non-reference
frames to the output formatter. Data is written in
16KB programmable buffer in system memory 110 aligned
on a 16K boundary. The following table lists the
output unit control registers:

Table 17 - Output Control Register

Name Bit(s) Description

Output Address 19:31 Physical base address of reference frame
being written

RFU 16:18
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Output Mode 15 OXX -- Reference frame format;
XOX -- Reference frame format with
handshaking :

100 -- 16KB Strip;
101 -- 32 KB Strip;
110 -- 64KB Strip;
111 -- 128 KB Strip

RFU 0:13

If any of the strip buffer output modes are
enabled, the allocated buffer must be large enough to
hold at least two rows of macroblocks. This number
must be rounded to the next highest power of two (32KB
for 352 pel wide video). A reference frame format with
handshaking allows writing to a full reference from
format in memory while performing output formatting at
the same time.

Video Output Formatter
Figure 11 shows a block diagram of the video

output formatter utilized in the system of the present
invention. The video output formatter is operationally
independent from the MPEG core hardware. This is
another feature which allows multi-threaded decoding,
since the core hardware may decode one stream while the
formatter processes another.

The output formatter includes an input DMA
interpolation raster 242, color space converter and
dither filter 244, and a format conversion filter 246.
The control registers set by CPU 102 in output
formatter 185 are set forth as follows:

Table 18 - Output Formatter Configuration

Name Bit(s) Type Description

(reserved) 0:2 X reserved

vof snoop enable 3 RW enable snooping on vof output
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(reserved) 4:6 X reserved
(reserved) 4:9 X reserved
format 11 RW 0 = 32 bit
1 = 16 bit
(reserved) 16:18 X reserved
5 enable CSC 19 RwW YCbCr->RGB conversion on
(reserved) 20:22 X reserved
rowChunks 23:31 RW number of 32B chunks per line
10 Table 19 - Output Formatter Cropping Control
Name Bit(s) Type Description
(reserved) 0 X reserved
hStart 1:7 RwW starting horizontal MB offset
15 (reserved) 8 X reserved
vStart 9:15 RW starting vertical MB offset
(reserved) 16 X reserved
hStop 17:23 RW ending horizontal MB offset
(reserved) 24 X reserved
20 vStop 25:31 RW ending vertical MB offset
Table 20 - Output Formatter Input Buffer Address
25 Name Bit(s) Type Description
{reserved) 0:6 X reserved
unformatted display | 7:19 " RW 4K aligned address
buffer address
(reserved) 20:31 X reserved

30
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Table 21 - Output Formatter Output Buffer Address
Name Bit(s) Type Description
{reserved) 0:6 X reserved
5 formatted display 7:26 RW | 32B aligned address
buffer address
(reserved) 27:31 X reserved
10 Table 22 - Dither Matrix, Upper Half
Name Bit(s) Type Description
dither matrix (0,0) 0:3 RW signed 4-bit error value
dither matrix {0, 1) 4:7 RW (set to O for no dithering)
15 dither matrix (0,2) 8:11 RW
dither matrix {0,3) 12:15 RW
dither matrix (1,0) 16:19 RW
dither matrix (1,1) 20:23 RwW
dither matrix (1,2) 24:27 RW
20 dither matrix (1,3) 28:31 RwW
through (1,3)
Table 23 - Dither Matrix, Lower Half
25
Name Bit(s) Type Description
dither matrix (2,0) 0:3 RW signed 4-bit error value
dither matrix (2,1) 4:7 RW {set to O for no dithering)
dither matrix (2,2) 8:11 RW
30 dither matrix (2,3) | 12:15 RW
dither matrix (3,0) 16:19 RwW
dither matrix (3,1) | 20:23 | RW
dither matrix (3,2) 24:27 RW
dither matrix (3,3) 28:31 Rw
35 through (3,3)
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Table 24 - Output Formatter Alpha Fill Value
Name Bit(s) Type Description
{reserved) 0:23 X reserved
5 DSB 24 RW control bit
alpha fill value 25:31 RwW 7-bit alpha channel fill value

10
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30

35

Table 25 - Output Formatter Image Size

Name Bit(s) Type Description
(reserved) 0:15 X reserved
mb_height 16:23 RW image width in macroblocks
mb_width 24:31 RW image height in macroblocks

As shown in Figure 11A, data from the output DMA
controller is first converted to YUV444 format. Figure
11B graphically represents the interpolation of the
4:2:2 data to 4:4:4 format by interpolation of the
chroma pixels.

The

includes

and dither
coefficients to

block
both

The
color value conversion flow is represented in Figure
11C. and
the RGB components then computed at step 482. The
dithering matrix from Tables 22 and 23 may then be

colorspace conversion

adapted conversion

convert and amplify the output values of the data.

The YCbCr components are first normalized,

applied. The format stage 246 is controlled relative
to the type of format the data is to be written to.
Control bits for enabling the color space convert-
er, a video output format bit for controlling which
output mode of two defined modes will be used (32 bit,
16 bit),
provided.

(Table 25) allows the video output formatter to operate

and a dithering circuit enable are notably
In addition, a separate image size register
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independently of the MPEG core hardware so decoding and
formatting can occur simultaneously.

Specific information on how the data formatted by
the video output formatter is displayed can be found in
copending application Serial Nos. ' and

entitled CONFIGURABLE VIDEO DISPLAY SYSTEM
HAVING LIST-BASED. CONTROL MECHANISM FOR TIME-DEFERRED
INSTRUCTING OF 3D RENDERING ENGINE THAT ALSO RESPONDS
TO SUPERVISORY IMMEDIATE COMMANDS, filed May 10, 1995,
cited above, and CONFIGURABLE VIDEO DISPLAY SYSTEM

" HAVING LIST-BASED CONTROL MECHANISM FOR BY-THE-LINE AND

BY-THE-PIXEL MODIFICATION OF DISPLAYED FRAMES AND
METHOD OF OPERATING SAME filed May 10, 1995, cited

above.

Decoding a Single MPEG Stream
Figures 12 and 13 disclose the method of decoding

an MPEG encoded video stream in accordance with the
invention, and the data flow of video stream decompres-
sion in decompressing a single MPEG stream.

As shown in Figure 10, initially, the system
instructions program system memory buffers and the
configuration register information is set at default.
This includes the configuration register Dbit
descriptions to allow the decoder system of the present
invention to operate.

At step 262, a read of the compressed video stream
from system memory 110 (or another suitable data
structure source) occurs to determine, at step 264,
context information from the video stream, including
image size variables, and information for the parser
unit 212 (including picture coding type, the forward R
and backward R coding and size, the full pel backward
vector, the macroblock width and the macroblock
height). At step 266, the context information is
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programmed into the configuration registers of parser
unit 220. At step 268, the Q table values are
determined and programmed in the registers of inverse
quantization unit 222. At step 270, the decoding of
the pictures is determined and the slice information
provided to coded data address locations in - system
memory 110 which are accessible by video bitstream DMA
controller 170. The bitstream read addresses are
written to the bitstream read address status registers.

Steps 260 through 270 complete the software
instruction operations of the system of the present
invention with respect to decoding the video bitstream.

The system hardware then completes the video
decoding process. At step 272, video bitstream DMA
unit 170 controls reads the encoded, macroblock-level
data into the FIFO of the video bitstream DMA control-
ler 170 in accordance with the description set forth
above. At step 274, parser unit 170 parses the
macroblock data into run 1level pairs for inverse
quantization unit 214 and motion vector data for motion
vector processor 212. Motion vectors are sent to the
motion vector processor 212 at step 276 in Figure 10.
At step 280, the inverse quantizer unit 214 performs
run level and Huffman decoding using the quantization
tables provided at step 268. At step 282, 8x8 DCT
coefficient blocks provided from inverse quantization
unit 214 are provided to de-zig-zag unit 216 and DCT
coefficients data are provided to IDCT unit 218. At
step 284, inverse discrete cosine transform unit 218
performs an inverse discrete cosine transform on the
decoded data. At step 290, motion compensation unit
sums the motion prediction values and the IDCT decoded
picture data by querying, when necessary, prediction
reference data resident in the system memory, as will
be explained with reference to Figure 13. The decoded
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data is provided to the wvideo output DMA control at
step 292 and the video output formatter at step 294.
Figure 13 represents a flow diagram of the data
flow from specific locations in system memory 110
during video stream decompression. As should be
generally understood by Figure 13, the system memory is
divided into five buffers: a coded data buffer, a strip
buffer, two reference buffers (reference 0, reference

1), and two output buffers (output 0, output 1).

Image data flow, represented by arrow 600,
comprises encoded data at the bitstream slice level,

‘parsed in accordance with steps 260-270 of Fig. 10,

provided to MPEG core unit 200 from system memory 110.
Decoded data is returned to system memory 110, and
specifically to a strip buffer utilized to hold the
information prior to display. Decoded prediction data
from motion vector processor (step 275) is also written
to reference buffers 0 and 1, as represented along line
604, for use by motion compensation unit 179 relative
to decoding P-picture and B-picture macroblocks. The
decoded prediction data from reference buffers 0 and 1
will, if necessary, be provided to motion compensation
unit 175 as represented by line 606. As shown at line
610, reference buffer data may also be used by the
output formatter. The output of the video output
formatter is provided to output buffers 1 and 2 as
represented by line 612.

System memory 110 may include a series of output
buffers, and a series of reference buffers, all which
may be utilized in accordance with a one-to-one mapping
of streams to reference buffer sets when the decoding
hardware is decoding multiple streams of data.

However, a unique feature of the system of the
pPresent invention is the use of a single set of strip
and reference buffers. The reference buffers may be
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implemented as a cache buffer system where the newest
P- or B-picture reference information from several
sequences is written into the section of the code
(Reference 0 or 1) containing the oldest previously
written P- or B- data. This reduces the system memory
bandwidth required to implement the system of the
present invention. ‘

A software sequence of a multiple threaded decod-
ing algorithm is shown in Figure 14. In interactive
bitstreams, the sequence layer, group of pictures
layer, and picture layer may be absent. Because
multiple sequence headers, group of pictures headers,
and picture reference information is included in the
Stream, random access into the video sequence is
possible and indeed contemplated by the MPEG-1 stan-
dard. However, to achieve such random .access, the
MPEG-1 standard relies on repetition of the sequence
header. As shown in Fig. 14, each decoding sequence,
at the video stream, group of pictures, picture or
slice level, will require execution of steps 260-264.
Thus, steps 260-264, 260n-264n, and 260-264n+1 are
shown for 3 streams. A decision at step 265 is made by
the control software dependent upon the nature of the
display information being decoded. For example, if the
information to be decoded is multiple small pixel array
moving representations of baseball players on a field,
decision step 265 would determine the ordering of
decoding based upon the actions required of the players
during the displayﬂ Thus, the specific criteria upon
which ordering of streams occurs will be dependent upon
the nature of the application being decoded, the
information being displayed, the output format, and any
numober of other factors. Each stream from steps 266-
264, 260n-264n, etc. may be selectively fed to the
hardware processing steps 277-294. Because of the
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speed of the decoding hardware 200, an effective
multiple-thread decode of image data is possible. 1In
other words, multiple streams of data to be decoded
could be provided to the decoding hardware for
processing and, due to the speed of the hardware, each
stream will be decoded and sent to system memory.

Figure 15 shows the inputs and outputs of each
block of data and the direction of each block of data
during a typical video sequence. The diagram assumes
the common IBBPBBPBBI type frame ordering. The input
frames are shown in coded as opposed to temporal
ordering. The rows detail the input and output of each
of the hardware blocks as well as the contents of each
buffer over time.

The many features and advantages of the present
invention will be readily apparent to one of average
skill in the art. In accordance with the objectives of
the invention, an efficient, configurable, low-cost
MPEG decoding system is provided. The decoder utilizes
a unique combination of hardware and software functions
to decode an MPEG video stream. The system allows
decoding of multiple streams of MPEG video data.
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CLAIMS
What is claimed is:
1. A process for decoding MPEG encoded image

data stored in a system memory utilizing a
configurable image decoding apparatus, said
process comprising the steps of:
(a) extracting macroblock information from said
MPEG encoded image data, the macroblocks containing
image data and motion compensation data;
(b) extracting a series of parameters‘from the
MPEG encoded image data for decoding the MPEG encoded
data:
(c) determining quantization factors from the
encoded image data;
(d) configuring the configurable image decoding
apparatus, including

(i) configuring a means for parsing the
macroblock data into motion vectors and image data
with the series of parameters with the parameters
for decoding the encoded data;

(ii) configuring a means for performing
inverse quantization with the quantization co-
efficients;

(e) determining a decoding order of the extracted
macroblock information to be decoded;

(£) providing said extracted macroblock
information to the parsing means in the decoding order;

(g) combining decoded image data with motion
vectors extracted by the parsing means; and

(h) storing the combined data in the system

memory .

2. The process for decoding according to claim
1 wherein said step (a) comprises extracting a video
sequence and parsing the video sequence to obtain the
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macroblocks.

3. The process for decoding according to claim
2 wherein said step (a) includes extracting a series of
parameters from the video sequence.

4. The process for decoding according to claim
1 wherein said step (a) comprises searching a data
structure for said macroblocks.

5. The process for decoding according to claim
1 wherein said step (b) comprises searching a data
structure for said context information.

6. The process for decoding according to claim
1 wherein the process includes, prior to step a, the
step of

establishing in the system memory a series of
buffers, including a display buffer, a reference buffer
and a strip buffer.

7. The process for decoding according to claim
6 wherein said step (h) comprises

storing decoded image data in the strip buffer and
the reference buffer.

8. The process for decoding according to claim
6 wherein

said step (d) (i) further comprises obtaining, from
the series of parameters, image size data, forward and
backward r values, and forward and backward prediction
values, and writing said values to a configuration
register in the means for parsing.

9. The process for decoding according to claim
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1 further including the step of
(i) directing the data to an output
formatter.

10. The process for decoding according to claim
9 further including the step of
(i) storing data from the output formatter
in a display register in system memory.

11. A configurable decoding system in. a host
system, the host system including host system memory,
a host system memory controller and a central
processing unit, the system memory storing MPEG encoded
video data including a video sequence comprising one or
more groups of pictures, each picture comprised of a
plurality of slices of macroblocks, each macroblock
comprising at least four blocks, said blocks comprising
coded picture data and coded motion compensation data,
the system comprising:

instruction means for configuring the system
memory to include a reference buffer, a display buffer,
and a strip buffer;

instruction means for extracting, from said MPEG
encoded data, the video sequence and for extracting
context information from the video sequence, the
context information for decoding the video sequence
comprising header information, picture type, frame
size, image size and quantization tables, and for
extracting said sliées,of macroblocks from a picture in
each group of pictures;

a configurable MPEG decoder, the MPEG decoder
including configurable parsing means for extracting
picture and motion vector data, means for performing
entropy decoding on the picture data, programmable
means for performing inverse quantization on the
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decoded picture data, means for performing inverse zig-
zagging, and means for taking the inverse discrete
cosine transform of the picture data co-efficients;

configuration control means, operatively coupled
to the means for extracting and the configurable MPEG
decoder, for configuring the MPEG decoder by
programming the parsing means with said picture type,
frame size and image size, for configuring the means
for ©performing inverse quantization with said
quantization tables; ' '

configurable motion compensation means, coupled to
the configurable MPEG decoding unit and the system
memory;

configurable video output DMA controlling means,
coupled to the motion compensation means and the system
memory; and

configurable video output formatting means.

12. The decoding system of claim 11 wherein the
instruction means for configuring further includes
means for configuring the system memory to include a
data buffer, wherein data to be decoded is provided in
said data buffer and identified by a plurality of
addresses.

13. The decoding system of claim 12 wherein the
instruction means for configuring further includes
means for configuring the configurable MPEG decoder

with said context information.

14. The decoding system of claim 13 wherein said
configurable parsing means includes a configuration
register, said register being configured to contain
said context information, the context information
including image size data on the material being
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decoded.

15. The decoding system of claim 13 wherein said
context information includes at least the picture
coding type, the forward r size, and the backward r
size of the data to be decoded.

~ 16. The decoding system of claim 15 wherein said
programmable means for performing inverse quantization
includes a quantization table register.

17. The decoding system of claim 12 wherein the
reference buffers are operatively coupled to the motion
compensation unit.

18. The decoding system of claim 12 wherein the
buffers include a strip buffer, operatively coupled to
the motion compensation unit and the video output DMA
controller, storing decoded image data.

19. A process for decoding encoded video images
in a host system, the host system including a system
memory and a central processing unit, the system memory
containing image data to be decoded, comprising:

providing a configurable ©parsing means, an
configurable inverse quantization means, an inverse
zig-zag unit, and an inverse discrete cosine transform
unit;

defining, in ‘said system memory, a first and
second display buffers, a strip buffer, a first and
second reference buffers, and a bitstream buffer;

extracting from the image data, a video sequence
and a series of sequence parameters contained in the
video sequence, said sequence parameters including
information for decoding at least one picture in the
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stream;

outputting the sequence parameters to the
configurable parsing means;

outputting the image data to the configurable
parsing means;

writing decoded data to the strip buffer and to a
video output formatter and to the first and second
reference buffers; and

| outputting from the display means to the first and

second reference buffers. ' "

20. An apparatus for processing encoded image‘
data wherein image data is used to produce an image
composed of a matrix of pixels, the apparatus being
included in a host system, the host system including a
system memory and a processor, the apparatus
comprising:

a first input port for receiving a first encoded
image-defining signal, where said first encoded image
defining signal is divisible into at least one pixel
defining component, where each pixel defining component
may comprise motion vector data or pixel value data;

a first input/output port for receiving and
outputting a handshaking signal;

a second input/output port for outputting motion
vector data and receiving reference data defining a
reference frame relative to the motion vector data;

an output port for outputting decoded image data;

control means,Aoperatively instructing the central
processing unit to provide encoded image information
into the first input port, operatively instructing
decoded data from the output port to be written to
system memory, instructing reference information to be
input to the second input/output port and instructing
decoded data and reference information to be directed
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to an video output formatter.

21. Thé apparatus of claim 20 wherein the encoded
image data is written from a coded data buffer in the
system memory to the first input port.

22. The apparatus of claim 20 wherein the
apparatus further includes an encoded data DMA
controller, coupled to the first input port and the
system memory, controlling writing of the encoded image

information to the first input port.

23. The apparatus of claim 20 wherein the decoded
data is written to a strip buffer and a reference
buffer in the system memory from the ocutput port.

24. The apparatus of claim 20 wherein the
apparatus further includes an output DMA controller,
coupled to the output port and the system memory, and
the output DMA controller controls writing of the
decoded image information to the system memory.

25. The apparatus of claim 20 wherein the
reference information comprises decoded data from the
reference buffer in system memory.

26. The apparatus of claim 20 wherein said
apparatus includes a video output display system and
reference data is written to the video output display
system.

27. A process for decoding coded image data in a
host computer, the host computer including a host
system memory, a central processing unit, decoding
hardware, and wvideo formatting hardware, the process
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including:

directing the CPU to parse the system memory into
a series of buffers, including a display buffer, a
reference buffer and a strip buffer, the instruction
means; '

reading the coded image data and ascertaining
context information regarding information in the data
to be decoded;

parsing the coded data into the slice 1level
information and providing the information to the
decoding hardware;

retrieving decoded picture data from the decoding‘
hardware;

storing said decoded picture data in said
reference buffers and in said strip buffer;

directing the reference buffer data to the
decoding hardware;

outputting reference buffer information and
decoded picture data to the video formatting hardware;

storing formatted decoded picture data in a
display buffer in said system memory.

28. A process for decoding coded image data in a
host computer, the host computer including a central
processing unit (CPU) and system memory, the computer
including a decoding processor, comprising the steps
of:

(a) directing the CPU to perform the steps of

parsing the system memory into a series of
buffers, including a display buffer, a reference
buffer and a strip buffer;

reading the coded image data and ascertaining
context information regarding information in the
data to be decoded;

parsing the coded data into the slice level
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information and providing the information to the
decoding processor;
(b) directing the decoding processor to perform
the steps of
. distributing coded motion vector information

blocks and image data information blocks;

decoding the image data blocks into quantized
coefficient blocks;

performing an inverse quantization on said
quantized coefficient blocks to form pikel value
blocks;

converting the pixel value blocks to pixel
coefficients;

calculating the inverse discrete cosine
transform of the pixel coefficients to produce
pixel display values;

decoding the motion vector blocks into pixel
motion wvectors; and

adding the pixel motion vectors and pixel
display values; and
(c) directing the CPU to perform the steps

of:

retrieving decoded picture data from the
decoding hardware;

storing said decoded picture data in said
system memory;

directing the reference buffer data to the
decoding hafdware; and

storing formatted decoded picture data in a
display buffer in said system memory.

29. A process for decoding coded image data in a
host computer, the host computer including a host
system memory, a central processing unit, decoding
hardware, and video formatting hardware, the coded data



WO 96/36178 ‘ PCT/US96/06510

W o 9 6 U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

o g3 0 U D WD

- 63 -

including an nth stream of video data, an n + 1 stream
of video data and an n + m stream of video data, where
n and m are integers, the process including:

directing the CPU to parse the system memory into
a series of buffers, including a display buffer, a
reference buffer and a strip buffer, the instruction
means; _

reading the coded image data and, for each said
stream, ascertaining context information regarding the
coded image data to be decoded; '

parsing, for each stream, the coded data into the
slice level information;

ordering the coded data and the context
information into a stream decoding order;

providing the coded data and context information
to the decoding hardware;

retrieving decoded picture data from the decoding
hardware;

storing said decoded picture data in said
reference buffers and in said strip buffer;

directing the reference buffer data to the
decoding hardware;

outputting reference buffer information and
decoded picture data to the video formatting hardware;

storing formatted decoded picture data in a
display buffer in said system memory.

30. A process for decoding coded image data in a
host computer, thevhost computer including a central
processing unit (CPU) and system memory, the coded data
including an nth stream of video data, an n + 1 stream
of video data and an n + m stream of video data, where
n and m are integers the computer including a decoding
processor, comprising the steps of:

(a) directing the CPU to perform the steps of
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parsing the system memory into a series of
buffers, including a display buffer, a reference
buffer and a strip buffer; '

reading the coded image data;

determining, for each said stream, context
information regarding information in the data to
be decoded; _

parsing, for each stream, the coded data into
the slice level information and providing the
information to the decoding processor;
(b) directing the decoding processor to perform

the steps of

of:

distributing coded motion vector information

blocks and image data information blocks;
- decoding the image data blocks into quantized

coefficient blocks;

performing an inverse quantization on said
quantized coefficient blocks to form pixel value
blocks;

converting the pixel value blocks to pixel
coefficients;

calculating the inverse discrete cosine
transform of the pixel coefficients to produce
pixel display values;

decoding the motion vector blocks into pixel
motion vectors; and

adding the pixel motion vectors and pixel
display values; and
(c) directing‘ the CPU to perform the steps

retrieving decoded picture data from the
decoding hardware;

storing said decoded picture data in said
system memory;

directing the reference buffer data to the
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decoding hardware; and
storing formatted decoded picture data in a
display buffer in said system memory.

31. An MPEG decoder in a host computer system,
the host computer system including a host processor, a
system memory, a system bus, and a system memory
controller, comprising:

a memory controller interface coupled to the
system memory controller;

a video stream DMA controller, coupled to the
memory controller interface; |

a parsing means for distributing coded motion
vector information blocks and image data information
blocks;

an entropy decoding means, coupled to the parsing
means, receiving distributed image data blocks and
decoding the image data blocks into quantized coeffi-
cient blocks;

an inverse quantization means for receiving the
quantized coefficient blocks and performing an inverse
quantization on said quantized coefficient blocks to
form pixel value blocks;

an inverse zig-zag means for converting the pixel
value blocks to pixel coefficients;

an inverse discrete cosine transform means for
calculating the inverse discrete cosine transform of
the pixel coefficients to produce pixel display values;

‘a motion vector processor means, coupled to the
parsing means and receiving the distributed motion
vector blocks, for decoding the motion vector blocks
into pixel motion vectors;

a motion compensation unit, coupled to the motion
vector analyzer and the inverse discrete cosine trans-
form means, for adding the pixel motion vectors and
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a video output DMA controller, coupled to the
motion compensation unit and the memory controller
interface, for ordering the pictures in an output
order; and

a video output formatter, coupled to the video
output DMA controller and the memory controller interf-
ace.

32. The decoder of claim 31 wherein the system
memory includes data buffers, wherein data to be
decoded is provided in said buffers identified by a |
plurality of addresses, and wherein said DMA controller
is operatively coupled to said buffers.

33. The decoder of claim 32 wherein the bitstream
DMA controller includes a FIFO RAM, a FIFO RAM
controller, an end of picture detector, and an address
generator for generating said addresses.

34. The decoder of claim 33 wherein the bitstream
DMA controller includes an address register queue, said
register queue containing system memory addresses for
the coded data.

35. The decoder of claim 34 wherein the address
register queue includes a current address register, a
next address register, a current length register and a
next length registef.

36. The decoder of claim 31 wherein the parsing
means comprises a bit shifter, a state machine and a
FIFO RAM.

37. The decoder of claim 36 wherein the parsing
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means contains programmable registers for receiving
context information including image size data and
picture coding information.

38. The decoder of claim 37 wherein the image
size data includes an macroblock width and macroblock
height.

39. The decoder of claim 38 wherein the picture
coding information includes the picture coding type,
the forward r size, backward r size, the forward pel:
vector and backward pel vector.

40. The decoder of claim 36 wherein the state
machine is coupled to the motion wvector processor
means, and said FIFO.

41. The decoder of claim 40 wherein an output of
said state machine comprises motion vector data
provided to the motion wvector processing means and
another output of said state machine comprises picture
data provided to said FIFO.

42. The decoder of claim 40 wherein said system
memory includes a configuration register containing
configuration information on said parsing means,
entropy decoding means, motion compensation unit, video
output DMA controller and video output formatter.

43. The decoder of claim 40 wherein said inverse
quantization means includes a quantization table
register.

44. An MPEG decoder in a host computer system,
the host computer system including a host processor, a
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system memory, a system bus, and a system memory
controller, the system memory containing data to be
decoded, comprising:

control means for instructing the host processor
to deconstruct the encoded image data to extract
macroblock level data comprising encoded picture data
blocks and motion vector blocks, for instructing the

host processor to determine the decoding order of the

macroblock data, and for extracting picture data and
quantization table data from the encoded image data;

a system memory controller interface coupled to
the system memory controller via the system bus;

a video image data DMA controller, coupled to the
system memory controller interface, the DMA controller
including a video stream buffer receiving picture data
from the system memory under direction of the control
means;

a motion compensation unit, coupled to the system
memory controller interface;

a slice and macroblock decompression unit, coupled
to the video stream buffer and the motion compensation
unit, the decompression unit comprising

a configurable parser, coupled to the video
stream buffer for directing pixel data blocks and
motion vector blocks;

a configurable decoding unit receiving pixel
data blocks and performing entropy decoding and
inverse quantization on said pixel data blocks;

a pixel data block inverse zig-zag scan unit,
receiving pixel data blocks from the configurable
decoding unit;

an inverse discrete cosine transform unit
receiving pixel data blocks from the inverse zig-
zag scan unit and performing and outputting pixel
data blocks having decoded pixel value data; and
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a motion vector processor, coupled to the
parser, receiving the motion vector blocks;

a motion compensation unit, coupled to the inverse
discrete cosine transform unit and the motion vector
processor;

a video output DMA controller, coupled to the
system memory interface controller and the motion
compensation unit; and

a video output formatter, coupled to the system
memory interface controller and the motion video output
DMA controller.

45. The decoder of claim 44 wherein said control
means includes means for defining, in said system
memory, a plurality of buffers including at least
configuration buffers, data buffers, and display
buffers.

46. The decoder of claim 45 wherein said data
buffers include said encoded data blocks.

47. The decoder of claim 44 further including
hardware configuration registers, said configuration
registers including system configuration information
for said configurable parser, said configurable
decoding unit, said wvideo output DMA controller, and
said video output formatter.

48. The decoder of claim 47 wherein said parser
includes a parser configuration register for storing
context information.

49. The decoder of claim 47 wherein said parser
configuration information includes at least the picture
coding type, the forward r size, and the backward r



WO 96/36178 PCT/US96/06510

W N R

Uobd WD R

A U W N

- 70 -
size of the data to be decoded.

50. The decoder of claim 45 wherein the buffers
include a reference buffer, operatively coupled to the
motion compensation unit, storing reference image data.

51. The decoder of claim 50 wherein two reference
buffers are provided, and reference picture information
is alternatively written to each said buffer.

52. The decoder of claim 45 wherein the registers
include a strip buffer register, operatively coupled to
the motion compensation unit and the video output DMA
controller, storing decoded image data.

53. The decoder of claim 45 wherein the display
buffers include display data output from the wvideo
output formatter.

54. The decoder of claim 45 wherein the entropy
decoding unit includes a register to store gquantization
table data.

55. The decoder of claim 45 wherein the wvideo
image data DMA controller includes an address queue and
a length queue, the address and length queues including
current and future system memory addresses where coded
data is located in system memory.

56. An integrated circuit for decoding coded data
in a host system, the host system including a host
system memory, a host system processor, a host system
memory controller, and a host system bus, the
integrated circuit comprising:

a memory controller interface, coupled to the host
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system memory controller by the host system bus;

a input/output bus, operatively coupled to the
host system memory controller and the memory controller
interface;

an encoded data DMA controller, coupled to the i/o

bus;
a motion compensation unit, coupled to the i/o
bus;
l a output data DMA controller, coupled to the i/o
bus;

an output formatter, coupled to the i/o bus; and

data decompression hardware, having a first i/o:
port operatively coupled to the encoded data DMA
controller and a second i/o port coupled to the motion
compensation unit, said hardware receiving encoded MPEG
video macroblock information at the first I/0O port and
outputting decoded MPEG video data at the second I/0O
port.

57. The circuit of claim 56 wherein the system
memory includes data buffers, wherein data to be
decoded is provided in said buffers identified by a
plurality of addresses, and wherein said encoded data
DMA controller is operatively coupled to said buffers
via the memory controller interface.

58. The circuit of claim 56 wherein the encoded
data DMA controller includes a FIFO RAM, a FIFO RAM
controller, an end of picture detector, and an address

generator for generating said addresses.

59. The circuit of claim 58 wherein the address
generator includes registers containing configuration
information regarding the encoded data location in
system memory.
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60. The circuit of claim 59 wherein the registers
include a current address register, a next address
register, a current length register and a next length

register.

61. The circuit of claim 56 wherein data
decompression hardware includes

a configurable parser, coupled to the system
memory, for directing encoded data in pixel data blocks
and motion vector blocks; A

a configurable decoding unit receiving pixel data
blocks and performing entropy decoding and inverse
quantization on said pixel data blocks;

a pixel data block inverse zig-zag scan unit,
receiving pixel data blocks from the configurable
decoding unit;

an inverse discrete cosine transform unit receiv-
ing pixel data blocks from the inverse zig-zag scan
unit and performing and outputting pixel data blocks
having decoded pixel value data; and

a motion vector processor, coupled to the parser,
receiving the motion vector blocks and generating

motion pixel motion data.

62. The <circuit of «claim 61 wherein the
configurable parser includes configuration registers
for storing context information on said encoded video
data.

63. The circuit of <claim 61 wherein the
configurable decoding unit includes a register for
storing quantization tables.

64. The circuit of claim 56 wherein the data
decompression hardware further includes
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a motion compensation unit, coupled to the inverse
discrete cosine transform unit and the motion vector
processor;

a video output DMA controller, coupled to the
system memory interface controller and the motion
compensation unit; and

a video output formatter, coupled to the system
memory interface controller and the motion video output
DMA controller.

65. An MPEG decoding system, comprising:

a host system including a host system memory, a
host system memory controller, a host system processor,
and a host system bus, the host system memory being
divided into at least a storage area buffer, a first
and a second display buffer buffers, a coded data
buffer, and a first and second reference buffers;

MPEG video data decoding hardware including:

means for parsing image data blocks and
motion vector blocks from macroblock data;

means for constructing motion vector data
from coded motion vector blocks;

means for performing entropy decoding on
coded image data blocks;

means for performing inverse quantization of
the coded image data blocks ;

means for taking the inverse discrete cosine
transform of the coded image data;

a motion éompensation means, coupled to the
means for taking the inverse discrete cosine
transform and the motion vector processor, and
operatively coupled to the system memory, for
constructing picture data from the image data and
motion vector blocks;

a video output DMA controller, operatively
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coupled to the system memory controller and the
motion compensation means;

a video output formatter, coupled to the
system memory and the video output DMA controller;
and
instruction means, provided in the storage area

and executable by the host system processor, for
directing encoded image data to the parsing means in a
decoding order, for configuring the means for parsing
image data blocks, and interacting with the host system
memory to store decoded image data, display image data,
and configuration data for the decoding hardware.

66. The decoder of claim 65 wherein said
instruction means includes means for defining, in said
system memory, a plurality of buffers including at
least data buffers, reference buffers, and display
buffers.

67. The decoder of claim 66 wherein said data
buffers include said encoded data blocks.

68. The decoder of claim 65 further including

system configuration registers wherein said
configuration registers include configuration
information for said configurable parser, said

configurable decoding unit, said video output DMA
controller and Video Output Formatter.

69. The decoder of claim 68 wherein said parser
includes a configuration data register including at
least the picture coding type, the forward r size, and
the backward r size of the data to be decoded.

70. The decoder of claim 66 wherein the plurality



WO 96/36178 PCT/US96/06510

Ul bd W N

W o g 6 U1 b W N B

N NN NNMNMNNRERRRARBPBRPBR (@ B
O Ul d W NERE O W®D®IOU D W R o

27

- 75 -

of buffers further includes a strip buffer register,
operatively coupled to the motion compensation unit and
the video output DMA controller, storing decoded image
data.

71. An MPEG decoding system, comprising:

software means for decoding a first portion of
MPEG encoded data, including means for extracting
macroblock data from said MPEG encoded data and for
establishing a decoding order for said macroblock data;

'and

hardware means for decoding the macroblock data,
including

means for extracting motion vector data and
display data from said macroblocks,

means for decoding encoded AC coefficients
and DC coefficients in said display data,

means for inversely quantizing said coeffi-
cients into a resulting array of decoded AC
coefficient,

means for inversely scanning said array of
decoded AC coefficients and DC coefficients in a
zig-zag pattern to provide a block of discrete
cosine transformed coefficients,

means for taking the inverse discrete cosine
transform of the block of discrete cosine trans-
formed coefficients to provide a first set of pel
data; |

means for'decoding the motion vector data to
provide a second set of pel data; and

means for adding the first and second sets of

pel data.

72. An MPEG decoding system, comprising:
software means for decoding a nth stream of MPEG
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encoded data, an nth + 1 stream of MPEG encoded data,
and an nth + m stream of MPEG encoded data, where m is
an integer, including means for extracting macroblock
data from each said MPEG encoded stream data and for
establishing a decoding order for said macroblock data,
and means for ordering the macroblock data from each
said stream for decoding; and
hardware means for decoding the macroblock data,
including
means for extracting motion vector data and
display data from said macroblocks,
means for decoding encoded AC coefficients
and DC coefficients in said display data,
means for inversely quantizing said coeffi-
cients into a resulting array of decoded AC
coefficient,
means for inversely scanning said array of
decoded AC coefficients and DC coefficients in a
zig-zag pattern to provide a block of discrete
cosine transformed coefficients,
means for taking the inverse discrete cosine
transform of the block of discrete cosine trans-
formed coefficients to provide a first set of pel
data;
means for decoding the motion vector data to
provide a second set of pel data; and
means for adding the first and second sets of
pel data.
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